Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 10, pp 9785–9795 | Cite as

Influence of the residence time of street trees and their soils on trace element contamination in Paris (France)

  • Katell QuénéaEmail author
  • Iry Andrianjara
  • Aleksandar Rankovic
  • Erika Gan
  • Emmanuel Aubry
  • Jean-Christophe Lata
  • Sébastien Barot
  • Maryse Castrec-Rouelle
Research Article
  • 88 Downloads

Abstract

With the actual increasing interest for urban soils, the evaluation of soil contamination by trace elements and the dynamics of this contamination appear mandatory to preserve plant and thereby human health. Street trees and the associated soil placed in pits located nearby roads could represent convenient indicators of urban and vehicle traffic influences on soils and plants. However, data on these soils remain scarce, many studies investigating park soils rather than street tree soils. Furthermore, trace elements could be one of the main factors causing the observed urban tree decline, while practitioners more and more question the possible reuse of these soils after the death of trees as well as tree litter collected in the streets. We evaluated the contamination in anthropogenic trace elements (TE), namely Zn, Pb, and Cd, of street trees (Tilia tomentosa) and their soils distributed all over Paris (France). Street tree soils are imported from rural areas at the plantation of each new tree so that tree age corresponds to the time of residence of the soil within an urban environment allowing the evaluation of temporal trends on TE concentration in soils and trees. The TE concentration revealed an important soil pollution, especially for the older soils (mean age of 80 years old). The consideration of the residence time of trees and soils in an urban environment evidenced an accumulation of Zn and Pb (ca. 4.5 mg kg−1 year−1 and 4 mg kg−1 year−1 for Zn and Pb, respectively). However, leaf concentrations in TE were low and indicate that soil-root transfer was not significant compared to the contamination by atmospheric deposition. These results underlined the necessity to deepen the evaluation of the recycling of urban soils or plants submitted to urban contamination.

Keywords

Urban soils Road traffic impact Bioaccumulation Trace element Leaves Roots 

Notes

Acknowledgements

We would like to acknowledge Yannick Agnan for comments on an early version of the manuscript.

Funding information

Sampling campaigns benefited from funding from the Île-de-France region (R2DS), the GIS “Climate, Environment, Society” (CCTV2 Project), the PIR IngEcoTech (IESUM project), and the Sorbonne Universities (Dens’ project, Convergences program).

References

  1. Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143CrossRefGoogle Scholar
  2. Aničic M, Spasic T, Tomasevic M, Rajšića S, Tasića M (2011) Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecol Indic 11:824–830CrossRefGoogle Scholar
  3. Ayrault S, Catinon M, Boudouma O, Bordier L, Agnello G, Reynaud S, Tissut M (2013) Street dust: source and sink of heavy metals to urban environment. E3S Web of Conferences, volume 1, 2013 Proceedings of the 16th International Conference on Heavy Metals in the Environment. 1. 20001.  https://doi.org/10.1051/e3sconf/20130120001
  4. Azimi S, Rocher V, Garnaud S, Varrault G, Thevenot DR (2005a) Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere 61:645–651CrossRefGoogle Scholar
  5. Azimi S, Rocher V, Ruller M, Moilleron R, Thevenot DR (2005b) Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci Total Environ 337:223–239CrossRefGoogle Scholar
  6. Basioli M, Barberis R, Ajmone-Marsan F (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356:154–164CrossRefGoogle Scholar
  7. Baycu G, Tolunay D, Özden H, Günebakan S (2006) Ecophysiological and seasonal variations in cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut 143:545–554CrossRefGoogle Scholar
  8. Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22(3):233–248Google Scholar
  9. Charlesworth S, Everett M, McCarthy R, Ordóñez A, de Miguel E (2003) A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int 29:563–573CrossRefGoogle Scholar
  10. Chen T-B, Zheng Y-M, Lei M, Huang Z-C, Wu H-T, Chen H, Fan K-K, Yu K, Wu X, Tian Q-Z (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60:542–551CrossRefGoogle Scholar
  11. Chojnacka K, Chojnacki A, Gorecka H, Gorecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182CrossRefGoogle Scholar
  12. DalCorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6(10):1770–1788CrossRefGoogle Scholar
  13. David AAJ, Boura A, Lata J-C, Rankovic A, Kraepiel Y, Charlot C, Barot S, Abbadie L, Ngao J (2018) Street trees in Paris are sensitive to spring and autumn precipitation and recent climate changes. Urban Ecosyst 21:135–145CrossRefGoogle Scholar
  14. Davis BS, Birch GF (2011) Spatial distribution of bulk atmospheric deposition of heavy metals in metropolitan Sydney, Australia. Water Air Soil Pollut 214:147–162CrossRefGoogle Scholar
  15. De Miguel E, Llamas JF, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31:2733–2740CrossRefGoogle Scholar
  16. Deljanin I, Antanasijević D, Bjelajac A, Urošević MA, Nikolić M, Perić-Grujić A, Ristić M (2016) Chemometrics in biomonitoring: distribution and correlation of trace elements in tree leaves. Sci Total Environ 545:361–371CrossRefGoogle Scholar
  17. Duigou N, Baize D (2010). Nouvelle collecte nationale d’analyses d’éléments en traces dans les sols (horizons de surface)-(Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn). Rapport final. ADEME convention 0875C0036, France. 284 pGoogle Scholar
  18. Ermakov V, Perelomov L, Khushvakhtova S, Tyutikov S, Danilova V, Safonov V (2017) Biogeochemical assessment of the urban area in Moscow. Environ Monit Assess 189(12):641Google Scholar
  19. Foti L, Dubs F, Gignoux J, Lata JC, Lerch TZ, Mathieu J, Nold F, Nunan N, Raynaud X, Abbadie L, Barot S (2017) Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci Total Environ 598:938–948CrossRefGoogle Scholar
  20. Gajbhiye T, Pandey SK, Kim KH, Szulejko JE, Prasad S (2016a) Airborne foliar transfer of PM bound heavy metals in Cassia siamea: a less common route of heavy metal accumulation. Sci Total Environ 573:123–130CrossRefGoogle Scholar
  21. Gajbhiye T, Kim KH, Pandey SK, Brown RJ (2016b) Foliar transfer of dust and heavy metals on roadside plants in a subtropical environment. Asian J Atmos Environ 10(3):137–145CrossRefGoogle Scholar
  22. Galloway JN, Thornton JD, Norton SA, Volchok HL, McLean RA (1982) Trace metals in atmospheric deposition: a review and assessment. Atmos Environ (1967) 16(7):1677–1700CrossRefGoogle Scholar
  23. Garnaud S, Mouchel J-M, Chebbo G, Thevenot DR (1999) Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff. Sci Total Environ 235:235–245CrossRefGoogle Scholar
  24. Gaspéri J, Ayrault S, Moreau-Guigon E, Alliot F, Labadie P, Budzinski H,  Blanchard M, Muresan B, Caupos E, Cladière M, Gateuille D, Tassin B, Bordier L, Teil M-J, Bourges C, Desportes A, Chevreuil M, Moilleron R, Gateuille D (2018) Contamination of soils by metals and organic micropollutants: case study of the Parisian conurbation. Environ Sci Pollut Res 25(24):23559–23573Google Scholar
  25. Ge Y, Murray P, Hendershot WH (2000) Trace metal speciation and bioavailability in urban soils. Environ Pollut 107:137–144CrossRefGoogle Scholar
  26. Gillooly SE, Shmool JLC, Michanowicz DR, Bain DJ, Cambal LK, Shields KN, Clougherty JE (2016) Framework for using deciduous tree leaves as biomonitors for intraurban particulate air pollution in exposure assessment. Environ Monit Assess 188:479CrossRefGoogle Scholar
  27. Gratani L, Crescente MF, Varone L (2008) Long-term monitoring of metal pollution by urban trees. Atmos Environ 42(35):8273–8277CrossRefGoogle Scholar
  28. Gromaire M-C, Chebbo G, Constant A (2002) Impact of zinc roofing on urban runoff pollutant loads: the case of Paris. Water Sci Technol 45:113–122CrossRefGoogle Scholar
  29. Guéguen F, Stille P, Geagea ML, Boutin R (2012) Atmospheric pollution in an urban environment by tree bark biomonitoring—Part I: trace element analysis. Chemosphere 86(10):1013–1019CrossRefGoogle Scholar
  30. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, de Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pesch R, Rühling Å, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156CrossRefGoogle Scholar
  31. Harrison RM, Laxen DPH, Wilson SJ (1981) Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils. Environ Sci Technol 15:1379–1383Google Scholar
  32. Hovmand MF, Nielsen SP, Johnsen I (2009) Root uptake of lead by Norway spruce grown on 210 Pb spiked soils. Environ Pollut 157(2):404–409CrossRefGoogle Scholar
  33. Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124(2):247–256CrossRefGoogle Scholar
  34. Kabata-Pendias A (2004) Soil-plant transfer of trace elements—an environmental issue. Geoderma 122:143–149CrossRefGoogle Scholar
  35. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC press, Boca RatonGoogle Scholar
  36. Kargar M, Jutras P, Clark OG, Hendershot WH, Prasher SO (2013) Trace metal contamination influenced by land use, soil age, and organic matter in Montreal tree pit soil. J Environ Qual 42(5):1527–1533Google Scholar
  37. Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem 11:363–370CrossRefGoogle Scholar
  38. Li X, Poon C-S, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368CrossRefGoogle Scholar
  39. Madejon P, Maranon T, Murillo JM, Robinson B (2004) White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ Pollut 132(1):145–155CrossRefGoogle Scholar
  40. Madrid L, Dı́az-Barrientos E, Madrid F (2002) Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 49(10):1301–1308Google Scholar
  41. Madrid L, Diaz-Barrientos E, Ruiz-Cortes E et al (2006) Variability in concentration of potentially toxic elements in urban parks from six European cities. J Environ Monit 8:1158–1165CrossRefGoogle Scholar
  42. Maher BA, Moore C, Matzka J (2008) Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos Environ 42:364–373CrossRefGoogle Scholar
  43. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243CrossRefGoogle Scholar
  44. Markert B, Herpin U, Siewers U, Berlekamp J, Lieth H (1996) The German heavy metal survey by means of mosses. Sci Total Environ 182:159–168CrossRefGoogle Scholar
  45. Markert BA, Breure AM, Zechmeister HG (2003) Chapter 1 definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Trace metals and other contaminants in the environment. Elsevier, Amsterdam, pp 3–39Google Scholar
  46. Mertens J, Luyssaert S, Verheyen K (2005) Use and abuse of trace metal concentration in plant tissue for biomonitoring and phytoextraction. Environ Pollut 138:1–4CrossRefGoogle Scholar
  47. Mijić Z, Stojić A, Perišić M, Rajšić S, Tasić M, Radenković M, Joksić J (2010) Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade. Atmos Environ 44:3630–3637CrossRefGoogle Scholar
  48. Morton-Bermea O, Hernandez-Alvarez E, Gonzalez-Hernandez G, Romero F, Lozano R, Beramendi-Orosco LE (2009) Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. J Geochem Explor 101:218–224CrossRefGoogle Scholar
  49. Motelay-Massei A, Ollivon D, Tiphagne K, Garban B (2005) Atmospheric bulk deposition of trace metals to the Seine River Basin, France: concentrations, sources and evolution from 1988 to 2001 in Paris. Water Air Soil Pollut 164:119–135CrossRefGoogle Scholar
  50. Nabulo G, Oryem-Origa H, Diamond M (2006) Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ Res 101(1):42–52CrossRefGoogle Scholar
  51. Natali M, Zanella A, Rankovic A, Banas D, Cantaluppi C, Abbadie L, Lata JC (2016) Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses. Environ Sci Pollut Res 23(23):23496–23510CrossRefGoogle Scholar
  52. Nurmatov N, Leon Gomez DA, Hensgen F, Bühle L, Wachendorf M (2016) High-quality solid fuel production from leaf litter of urban street trees. Sustainability 8(12):1249CrossRefGoogle Scholar
  53. Peltola P, Ivask A, Åström M, Virta M (2005) Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast. Sci Total Environ 350(1):194–203CrossRefGoogle Scholar
  54. Peña-Fernández A, González-Muñoz MJ, Lobo-Bedmar MC (2014) Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ Int 72:176–185CrossRefGoogle Scholar
  55. Piczak K, Lesniewicz A, Zyrnicki W (2003) Metal concentrations in deciduous tree leaves from urban areas in Poland. Environ Monit Assess 86:273–287CrossRefGoogle Scholar
  56. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540CrossRefGoogle Scholar
  57. Rahman MA, Smith JG, Stringer P, Ennos AR (2011) Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban For Urban Green 10:185–192CrossRefGoogle Scholar
  58. Rocher V, Azimi S, Gasperi J, Beuvin L, Muller M, Moilleron R, Chebbo G (2004) Hydrocarbons and metals in atmospheric deposition and roof runoff in Central Paris. Water Air Soil Pollut 159:67–86CrossRefGoogle Scholar
  59. Rodrigues S, Urquhart G, Hossack I, Pereira ME, Duarte AC, Davidson C, Hursthouse A, Tucker P, Roberston D (2009) The influence of anthropogenic and natural geochemical factors on urban soil quality variability: a comparison between Glasgow, UK and Aveiro, Portugal. Environ Chem Lett 7:141–148CrossRefGoogle Scholar
  60. Rossini P, Guerzoni S, Molinaroli E, Rampazzo G, De Lazzari A, Zancanaro A (2005) Atmospheric bulk deposition to the lagoon of Venice. Environ Int 31:959–974CrossRefGoogle Scholar
  61. Saby N, Arrouays D, Boulonne L, Jolivet C, Pochot A (2006) Geostatistical assessment of Pb in soil around Paris, France. Sci Total Environ 367:212–221CrossRefGoogle Scholar
  62. Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159:3560–3570CrossRefGoogle Scholar
  63. Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427–428:253–262CrossRefGoogle Scholar
  64. Serbula SM, Kalinovic TS, Ilic AA, Kalinovic JV, Steharnik MM (2013) Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol Air Qual Res 13:563–573CrossRefGoogle Scholar
  65. Smith WH (1976) Lead contamination of the roadside ecosystem. J Air Pollut Cont Assoc 26(8):753–766CrossRefGoogle Scholar
  66. Thevenot DR, Moilleron R, Lestel L, Gromaire MC, Rocher V, Cambier P, Bonté P, Colin JL, de Pontevès C, Meybeck M (2007) Critical budget of metal sources and pathways in the Seine river basin (1994-2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Sci Total Environ 375:180–203CrossRefGoogle Scholar
  67. Tomašević M, Aničić M, Jovanović L, Perić-Grujić A, Ristić M (2011) Deciduous tree leaves in trace elements biomonitoring: a contribution to methodology. Ecol Indic 11(6):1689–1695CrossRefGoogle Scholar
  68. Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallout. Environ Sci Technol 44:1036–1042CrossRefGoogle Scholar
  69. Viard B, Pihan F, Promeyrat S, Pihan JC (2004) Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55(10):1349–1359CrossRefGoogle Scholar
  70. Werkenthin M, Kluge B, Wessolek G (2014) Metals in European roadside soils and soil solution—a review. Environ Pollut 189:98–110CrossRefGoogle Scholar
  71. Widory D, Roy S, Le Moullec Y, Goupil G, Cocherie A, Guerrot C (2004) The origin of atmospheric particles in Paris: a view through carbon and lead isotopes. Atmos Environ 38:953–961CrossRefGoogle Scholar
  72. Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76(3):381–397CrossRefGoogle Scholar
  73. Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Katell Quénéa
    • 1
    Email author
  • Iry Andrianjara
    • 1
    • 2
    • 3
  • Aleksandar Rankovic
    • 2
    • 4
  • Erika Gan
    • 3
  • Emmanuel Aubry
    • 1
  • Jean-Christophe Lata
    • 2
    • 5
  • Sébastien Barot
    • 2
  • Maryse Castrec-Rouelle
    • 1
  1. 1.CNRS, EPHE, UMR Environment, Transfers and Interactions in Soils and Water Bodies (METIS), UMR 7619Sorbonne UniversitéParisFrance
  2. 2.IRD, CNRS, INRA, Univ Paris Diderot Paris 07, UPEC, UMR 7618, Institute of Ecology and Environmental SciencesSorbonne Université, IRD, CNRS, INRA, Univ Paris Diderot Paris 07, UPEC, UMR 7618, Institute of Ecology and Environmental SciencesParisFrance
  3. 3.Laboratory of Agronomy of the Paris City, Paris Green Space and Environmental Division (DEVE), Parc Floral - Pavillon 5 - Rond Point de la PyramideParisFrance
  4. 4.IDDRI, Institute for Sustainable Development and International RelationsParisFrance
  5. 5.Department of Geoecology and Geochemistry, Institute of Natural ResourcesInstitute of Natural Resources, Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations