Advertisement

Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment

  • Weiwei Yu
  • Banghao DuEmail author
  • Lun Yang
  • Zhi Zhang
  • Chun Yang
  • Shaochun Yuan
  • Minne Zhang
Review Article

Abstract

Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and scientific community due to their recognized adverse effects on human and wildlife endocrine systems in recent years. In this review, the properties, occurrence, sorption process, and transformation pathways of NSEs are clarified in the environment. The work comprehensively summarizes the occurrence of both free and conjugated estrogens in different natural and built environments (e.g., river, WWTPs, CAFOs, soil, and sediment). The sorption process of NSEs can be impacted by organic compounds, colloids, composition of clay minerals, specific surface area (SSA), cation exchange capacity (CEC), and pH value. The degradation and transformation of free and conjugated estrogens in the environment primarily involves oxidation, reduction, deconjugation, and esterification reactions. Elaboration about the major, subordinate, and minor transformation pathways of both biotic and abiotic processes among NSEs is highlighted. The moiety types and binding sites also would affect deconjugation degree and preferential transformation pathways of CEs. Notably, some intermediate products of NSEs still remain estrogenic potency during transformation process; the elimination of total estrogenic activity needs to be addressed in further studies. The in-depth researches regarding the behavior of both free and conjugated estrogens are further required to tackle their contamination problem in the ecosystem.

Graphical abstract

Keywords

Free estrogens Conjugated estrogens Environmental behavior Occurrence Organic compounds Biotic/abiotic transformation pathways 

Abbreviations

NSEs

Natural steroid estrogens

FEs

Free estrogens

CEs

Conjugated estrogens

WHO

World Health Organization

EDCs

Endocrine-disrupting chemicals

E1

Estrone

17α-E2

17α-Estradiol

17β-E2

17β-Estradiol

E3

Estriol

E4

Estetrol

CSEs

Conjugated sulfate estrogens

E1-3S

Estrone-3-sulfate

17β-E2-3S

17β-Estradiol-3-sulfate

17β-E2-17S

17β-Estradiol-17-sulfate

17β-E2-3,17-2S

17β-Estradiol-3,17-disulfate

E3-3S

Estriol-3-sulfate

CGEs

Conjugated glucuronide estrogens

E1-3G

Estrone-3-glucuronide

17β-E2-3G

17β-Estradiol-3-glucuronide

17β-E2-17G

17β-Estradiol-17-glucuronide

E3-3G

Estriol-3-glucuronide

E3-16G

Estriol-16-glucuronide

E3-17G

Estriol-17-glucuronide

CS-GEs

Conjugated sulfate-glucuronide estrogens

17β-E2-3S-17G

17β-Estradiol-3-sulfate-17-glucuronide

17β-E2-3G-17S

17β-Estradiol-3-glucuronide-17-sulfate

E3-3S-16G

Estriol-3-sulfate-16-glucuronide

WWTPs

Wastewater treatment plants

HWWTPs

Hospital wastewater treatment plants

CAFOs

Concentrated animal feeding operations

Kow

Octanol-water partition coefficient

Kd

Solid-water distribution coefficient

Koc

Organic carbon distribution coefficient

pKa

Acid dissociation constant

E-Screen

Human breast cancer cell line proliferation

YES

Yeast estrogen screen

LOQ

Limit of quantification

LOD

Limit of detection

DOM

Dissolved organic matter

SRT

Solid retention time

HRT

Hydraulic retention time

ArySTS

Arylsulfatase

GUSB

β-glucuronidase

UV

Ultraviolet

O3

Ozone

·OH

Hydroxyl radical

SSA

Specific surface area

CEC

Cation exchange capacity

HA

Humic acid

COC

Colloidal organic carbon

DOC

Dissolved organic carbon

ArySULT

Arylsulfotransferase

Notes

Acknowledgments

The authors express sincere thanks to Editor Professor Doctor Ester Heath and three anonymous reviewers for their critical and dedicated comments on the original manuscript, which greatly improved the quality of the final article.

Funding information

This work was supported by the National Natural Science Foundation of China (51608079), National Engineering Technology Research Center for Inland Waterway Regulation and Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education Open Funding (SLK2018A04), Graduate Education Innovation Funding of School of River and Ocean Engineering, Chongqing Jiaotong University (YC2018002), and Laboratory Open Funding of Chongqing Jiaotong University (SYJ201608).

Supplementary material

11356_2019_4402_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)

References

  1. Adeel M, Song XM, Wang YY, Francis D, Yang YS (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119.  https://doi.org/10.1016/j.envint.2016.12.010 CrossRefGoogle Scholar
  2. Anderson PD, Johnson AC, Pfeiffer D, Caldwell DJ, Hannah R, Mastrocco F, Sumpter JP, Williams RJ (2012) Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters. Environ Toxicol Chem 31(6):1407–1415.  https://doi.org/10.1002/etc.1824 CrossRefGoogle Scholar
  3. Arnon S, Dahan O, Elhanany S, Cohen K, Pankratov I, Gross A, Ronen Z, Baram S, Shore LS (2008) Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater. Environ Sci Technol 42(15):5521–5526.  https://doi.org/10.1021/es800784m CrossRefGoogle Scholar
  4. Bai XL, Casey FXM, Hakk H, DeSutter TM, Oduor PG, Khan E (2013) Dissipation and transformation of 17β-estradiol-17-sulfate in soil-water systems. J Hazard Mater 260(2):733−739.  https://doi.org/10.1016/j.jhazmat.2013.06.036 CrossRefGoogle Scholar
  5. Bai XL, Shrestha SL, Casey FXM, Hakk H, Fan ZS (2014) Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems. J Contam Hydrol 168(6):17−24.  https://doi.org/10.1016/j.jconhyd.2014.09.001 CrossRefGoogle Scholar
  6. Bai XL, Casey FXM, Hakk H, DeSutter TM, Oduor PG, Khan E (2015) Sorption and degradation of 17β-estradiol-17-sulfate in sterilized soil-water systems. Chemosphere 119:1322–1328.  https://doi.org/10.1016/j.chemosphere.2014.02.016 CrossRefGoogle Scholar
  7. Barber LB, Keefe SH, Leblanc DR, Bradley PM, Chapelle FH, Meyer MT, Loftin KA, Kolpin DW, Rubio F (2009) Fate of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol in groundwater contaminated by wastewater treatment plant effluent. Environ Sci Technol 43(13):4843–4850.  https://doi.org/10.1021/es803292v CrossRefGoogle Scholar
  8. Barbosa MO, Moreira NF, Ribeiro AR, Pereira MF, Silva AM (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279.  https://doi.org/10.1016/j.watres.2016.02.047 CrossRefGoogle Scholar
  9. Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301.  https://doi.org/10.1016/j.chemosphere.2015.10.137 CrossRefGoogle Scholar
  10. Ben WW, Zhu B, Yuan XJ, Zhang Y, Yang M, Qiang ZM (2017) Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants: influence of operational parameters and removal pathways. Water Res 124:244–250.  https://doi.org/10.1016/j.watres.2017.07.065 CrossRefGoogle Scholar
  11. Ben WW, Zhu B, Yuan XJ, Zhang Y, Yang M, Qiang ZM (2018) Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: comparison of wastewater treatment processes. Water Res 130:38–46.  https://doi.org/10.1016/j.watres.2017.11.057 CrossRefGoogle Scholar
  12. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43(3):597–603.  https://doi.org/10.1021/es801845a CrossRefGoogle Scholar
  13. Biswas S, Kranz WL, Shapiro CA, Snow DD, Bartelt-Hunt SL, Mamo M, Tarkalson DD, Zhang TC, Shelton DP, van Donk SJ, Mader TL (2017) Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields. J Hazard Mater 324(Part B):436–447.  https://doi.org/10.1016/j.jhazmat.2016.11.009 CrossRefGoogle Scholar
  14. Blackwell BR, Johnson BJ, Buser MD, Cobb GP, Smith PN (2015) Transformation kinetics of trenbolone acetate metabolites and estrogens in urine and feces of implanted steers. Chemosphere 138:901–907.  https://doi.org/10.1016/j.chemosphere.2014.10.091 CrossRefGoogle Scholar
  15. Bonin JL, Simpson MJ (2007) Sorption of steroid estrogens to soil and soil constituents in single- and multi-sorbate systems. Environ Toxicol Chem 26(12):2604–2610.  https://doi.org/10.1897/07-118.1 CrossRefGoogle Scholar
  16. Bradley PM, Barber LB, Chapelle FH, Gray JL, Kolpin DW, Mcmahon PB (2009) Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments. Environ Sci Technol 43(6):1902–1910.  https://doi.org/10.1021/es802797j CrossRefGoogle Scholar
  17. Carballa M, Fink G, Omil F, Lema JM, Ternes T (2008) Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Res 42(1–2):287–295.  https://doi.org/10.1016/j.watres.2007.07.012 CrossRefGoogle Scholar
  18. Caron E, Farenhorst A, Mcqueen R, Sheedy C, Goddard T, Gaultier J (2010a) Mineralization of 17β-estradiol in 36 surface soils from Alberta, Canada. Agric Ecosyst Environ 139(4):534–545.  https://doi.org/10.1016/j.agee.2010.09.014 CrossRefGoogle Scholar
  19. Caron E, Farenhorst A, Zvomuya F, Gaultier J, Rank N, Goddard T, Sheedy C (2010b) Sorption of four estrogens by surface soils from 41 cultivated fields in Alberta, Canada. Geoderma 155(1–2):19–30.  https://doi.org/10.1016/j.geoderma.2009.11.017 CrossRefGoogle Scholar
  20. Carter DO, Yellowlees D, Tibbett M (2007) Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia 51(4):295–299.  https://doi.org/10.1016/j.pedobi.2007.05.002 CrossRefGoogle Scholar
  21. Casey FXM, Larsen GL, Hakk H, Simůnek J (2003) Fate and transport of 17β-estradiol in soil-water systems. Environ Sci Technol 37(11):2400–2409.  https://doi.org/10.1021/es026153z CrossRefGoogle Scholar
  22. Cédat B, de Brauer C, Métivier H, Dumont N, Tutundjan R (2016) Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. Water Res 100:357–366.  https://doi.org/10.1016/j.watres.2016.05.040 CrossRefGoogle Scholar
  23. Chambers KB, Casey FXM, Hakk H, Desutter TM, Shappell NW (2014) Potential bioactivity and association of 17β-estradiol with the dissolved and colloidal fractions of manure and soil. Sci Total Environ 494–495(1):58–64.  https://doi.org/10.1016/j.scitotenv.2014.06.121 CrossRefGoogle Scholar
  24. Chemicalize Features (2018) https://chemicalize.com/#/calculation. Accessed 7 April 2018
  25. ChemSpider (2018) http://www.chemspider.com/. Accessed 8 April 2018
  26. Chen X, Hu JY (2009) Degradation of 17β-estradiol and its conjugates: effects of initial concentration and MLSS concentration. Process Biochem 44(12):1330–1334.  https://doi.org/10.1016/j.procbio.2009.07.007 CrossRefGoogle Scholar
  27. Chen Y, Zhang K, Zuo YG (2013) Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. Sci Total Environ 463–464(5):802–809.  https://doi.org/10.1016/j.scitotenv.2013.06.026 CrossRefGoogle Scholar
  28. Chen Q, Li Z, Hua X (2018a) Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal. Environ Sci Pollut R 25(13):12981–12991.  https://doi.org/10.1007/s11356-018-1584-3 CrossRefGoogle Scholar
  29. Chen YL, Fu HY, Lee TH, Shih CJ, Huang L, Wang YS, Ismail W, Chiang YR (2018b) Estrogen degraders and estrogen degradation pathway identified in an activated sludge. Appl Environ Microb 84(10):e00001–e00018.  https://doi.org/10.1128/AEM.00001-18 CrossRefGoogle Scholar
  30. Clara M, Strenn B, Saracevic E, Kreuzinger N (2004) Adsorption of bisphenol-A, 17β-estradiole and 17α-ethinylestradiole to sewage sludge. Chemosphere 56(9):843–851.  https://doi.org/10.1016/j.chemosphere.2004.04.048 CrossRefGoogle Scholar
  31. Colucci MS, Bork H, Topp E (2001) Persistence of estrogenic hormones in agricultural soils: I. 17β-estradiol and estrone. J Environ Qual 30(6):2070–2076.  https://doi.org/10.2134/jeq2001.2070 CrossRefGoogle Scholar
  32. Combalbert S, Hernandez-Raquet G (2010) Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Environ Microbiol 86(6):1671–1692.  https://doi.org/10.1007/s00253-010-2547-x CrossRefGoogle Scholar
  33. Cox MK, Peterson KN, Tan D, Novak PJ, Schoenfuss HL, Ward JL (2018) Temperature modulates estrone degradation and biological effects of exposure in fathead minnows. Sci Total Environ 621:1591–1600.  https://doi.org/10.1016/j.scitotenv.2017.10.069 CrossRefGoogle Scholar
  34. Czajka CP, Londry KL (2006) Anaerobic biotransformation of estrogens. Sci Total Environ 367(2–3):932–941.  https://doi.org/10.1016/j.scitotenv.2006.01.021 CrossRefGoogle Scholar
  35. Czarny K, Szczukocki D, Krawczyk B, Zieliński M, Miękoś E, Gadzałakopciuch R (2017) The impact of estrogens on aquatic organisms and methods for their determination. Critl Rev Env Sci Tec 47(11):909–963.  https://doi.org/10.1080/10643389.2017.1334458 CrossRefGoogle Scholar
  36. D’Alessio M, Vasudevan D Lichwa J, Mohanty SK, Ray C (2014) Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores. J Contam Hydrol 166(5):1−10.  https://doi.org/10.1016/j.jconhyd.2014.07.006 CrossRefGoogle Scholar
  37. D’Ascenzo G, Di Corcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R (2003) Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Total Environ 302(1–3):199–209.  https://doi.org/10.1016/S0048-9697(02)00342-X CrossRefGoogle Scholar
  38. Dai YN, A D, Yang Y, Tam NF, Tai YP, Tang XY (2016) Factors affecting behavior of phenolic endocrine disruptors, estrone and estradiol, in constructed wetlands for domestic sewage treatment. Environ Sci Technol 50(21):11844–11852.  https://doi.org/10.1021/acs.est.6b02026 CrossRefGoogle Scholar
  39. de Wilt A, Butkovskyi A, Tuantet K, Leal LH, Fernandes TV, Langenhoff A, Zeeman G (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92.  https://doi.org/10.1016/j.jhazmat.2015.10.033 CrossRefGoogle Scholar
  40. Duong CN, Jin SR, Schlenk D, Sang DK, Choi HK, Sang DK (2010) Sorption of estrogens onto different fractions of sediment and its effect on vitellogenin expression in male Japanese medaka. Arch Environ Con Tox 59(1):147–156.  https://doi.org/10.1007/s00244-009-9429-1 CrossRefGoogle Scholar
  41. Durán-Álvarez JC, Prado B, Ferroud A, Juayerk N, Jiménez-Cisneros B (2014) Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils. Sci Total Environ 473–474(1):189–198.  https://doi.org/10.1016/j.scitotenv.2013.12.018 CrossRefGoogle Scholar
  42. Durant MB, Hartel PG, Cabrera ML, Vencill WK (2012) 17-β estradiol and testosterone mineralization and incorporation into organic matter in broiler litter-amended soils. J Environ Qual 41(6):1923–1930.  https://doi.org/10.2134/jeq2012.0047 CrossRefGoogle Scholar
  43. Dutta SK, Inamdar SP, Tso J, Aga DS (2012) Concentrations of free and conjugated estrogens at different landscape positions in an agricultural watershed receiving poultry litter. Water Air Soil Pollut 223(5):2821–2836.  https://doi.org/10.1007/s11270-011-1069-1 CrossRefGoogle Scholar
  44. Ekpeghere KI, Sim WJ, Lee HJ, Oh JE (2018) Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment. Sci Total Environ 640–641:1015–1023.  https://doi.org/10.1016/j.scitotenv.2018.05.218 CrossRefGoogle Scholar
  45. Erdal S, Dumlupinar R (2011) Exogenously treated mammalian sex hormones affect inorganic constituents of plants. Biol Trace Eleme Res 143(1):500–506.  https://doi.org/10.1007/s12011-010-8857-0 CrossRefGoogle Scholar
  46. Esteban S, Gorga M, González-Alonso S, Petrovic M, Barceló D, Valcárcel Y (2014) Monitoring endocrine disrupting compounds and estrogenic activity in tap water from Central Spain. Environ Sci Pollut R 21(15):9297–9310.  https://doi.org/10.1007/s11356-014-2847-2 CrossRefGoogle Scholar
  47. Esteban S, Moreno-Merino L, Matellanes R, Catalá M, Gorga M, Petrovic M, López de Alda M, Barceló D, Sliva A, Durán JJ, López-Martínez J, Valcárcel Y (2016) Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. Environ Res 147:179–192.  https://doi.org/10.1016/j.envres.2016.01.034 CrossRefGoogle Scholar
  48. Fan ZS, Casey FXM, Hakk H, Larsen GL (2007) Persistence and fate of 17β-estradiol and testosterone in agricultural soils. Chemosphere 67(5):886–895.  https://doi.org/10.1016/j.chemosphere.2006.11.040 CrossRefGoogle Scholar
  49. Fan ZS, Casey FXM, Hakk H, Larsen GL (2008) Modeling coupled degradation, sorption, and transport of 17β-estradiol in undisturbed soil. Water Resour Res 44(W08):424.  https://doi.org/10.1029/2007WR006407 CrossRefGoogle Scholar
  50. Fan ZS, Hu JY, An W, Yang M (2013) Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: comparison to the parent compounds. Environ Sci Technol 47(19):10841–10850.  https://doi.org/10.1021/es401504a CrossRefGoogle Scholar
  51. Feifarek DJ, Shappell NW, Schoenfuss HL (2018) Do environmental factors affect male fathead minnow (Pimephales promelas) response to estrone? Part 1. Dissolved oxygen and sodium chloride. Sci Total Environ 610−611:1262–1270.  https://doi.org/10.1016/j.scitotenv.2017.07.251 CrossRefGoogle Scholar
  52. Gadd JB, Tremblay LA, Northcott GL (2010) Steroid estrogens, conjugated estrogens and estrogenic activity in farm dairy shed effluents. Environ Pollut 158(3):730–736.  https://doi.org/10.1016/j.envpol.2009.10.015 CrossRefGoogle Scholar
  53. Gall HE, Sassman SA, Lee LS, Jafvert CT (2011) Hormone discharges from a midwest tile-drained agroecosystem receiving animal wastes. Environ Sci Technol 45(20):8755–8764.  https://doi.org/10.1021/es2011435 CrossRefGoogle Scholar
  54. Gall HE, Basu NB, Mashtare ML, Rao PSC, Lee LS (2016) Assessing the impacts of anthropogenic and hydro-climatic drivers on estrogen legacies and trajectories. Adv Water Resour 87:19–28.  https://doi.org/10.1016/j.advwatres.2015.10.012 CrossRefGoogle Scholar
  55. Genisel M, Turk H, Erdal S, Demir Y, Genc E, Terzi İ (2015) Ameliorative role of β-estradiol against lead-induced oxidative stress and genotoxic damage in germinating wheat seedlings. Turk J Bot 39:1051–1059.  https://doi.org/10.3906/bot-1505-23 CrossRefGoogle Scholar
  56. Gérard C, Blacher S, Communal L, Courtin A, Tskitishvili E, Mestdagt M, Munaut C, Noel A, Gompel A, Péqueux C, Foidart JM (2015) Estetrol is a weak estrogen antagonizing estradiol-dependent mammary gland proliferation. J Endocrinol 224(1):85−95.  https://doi.org/10.1530/JOE-14-0549 CrossRefGoogle Scholar
  57. Goeppert N, Dror I, Berkowitz B (2014) Detection, fate and transport of estrogen family hormones in soil. Chemosphere 95(1):336−345.  https://doi.org/10.1016/j.chemosphere.2013.09.039 CrossRefGoogle Scholar
  58. Goeppert N, Dror I, Berkowitz B (2015) Fate and transport of free and conjugated estrogens during soil passage. Environ Pollut 206:80–87.  https://doi.org/10.1016/j.envpol.2015.06.024 CrossRefGoogle Scholar
  59. Gomes RL, Scrimshaw MD, Lester JN (2009) Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies. Environ Sci Technol 43(10):3612–3618.  https://doi.org/10.1021/es801952h CrossRefGoogle Scholar
  60. Gong J, Duan DD, Yang Y, Ran Y, Chen DY (2016) Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China. Environ Pollut 219:735–741.  https://doi.org/10.1016/j.envpol.2016.07.015 CrossRefGoogle Scholar
  61. Gorga M, Insa S, Petrovic M, Barceló D (2015) Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers. Sci Total Environ 503–504:69–86.  https://doi.org/10.1016/j.scitotenv.2014.06.037 CrossRefGoogle Scholar
  62. Green C, Williams R, Kanda R, Churchley J, He Y, Thomas S, Goonan P, Kumar A, Jobling S (2013) Modeling of steroid estrogen contamination in UK and South Australian rivers predicts modest increases in concentrations in the future. Environ Sci Technol 47(13):7224–7723.  https://doi.org/10.1021/es3051058 CrossRefGoogle Scholar
  63. Griffith DR, Kido Soule MC, Matsufuji H, Eglinton TI, Kujawinski EB, Gschwend PM (2014) Measuring free, conjugated, and halogenated estrogens in secondary treated wastewater effluent. Environ Sci Technol 48(5):2569–2578.  https://doi.org/10.1021/es402809u CrossRefGoogle Scholar
  64. Griffith DR, Kido Soule MC, Eglinton TI, Kujawinski EB, Gschwend PM (2016) Steroidal estrogen sources in a sewage-impacted coastal ocean. Environ Sci-Proc Imp 18(8):981–991.  https://doi.org/10.1039/c6em00127k CrossRefGoogle Scholar
  65. Grill G, Li J, Khan U, Zhong Y, Lehner B, Nicell J, Ariwi J (2018) Estimating the eco-toxicological risk of estrogens in china’s rivers using a high-resolution contaminant fate model. Water Res 145:707–720.  https://doi.org/10.1016/j.watres.2018.08.053 CrossRefGoogle Scholar
  66. Gu LP, Huang B, Lai CC, Xu ZX, He H, Pan XJ (2018) The microbial transformation of 17β estradiol in an anaerobic aqueous environment is mediated by changes in the biological properties of natural dissolved organic matter. Sci Total Environ 631−632:641–648.  https://doi.org/10.1016/j.scitotenv.2018.03.056 CrossRefGoogle Scholar
  67. Hai FI, Tessmer K, Nguyen LN, Kang J, Price WE, Long DN (2011) Removal of micropollutants by membrane bioreactor under temperature variation. J Membrane Sci 383(1):144–151.  https://doi.org/10.1016/j.memsci.2011.08.047 CrossRefGoogle Scholar
  68. Hakk H, Sikora L, Casey FXM (2018) Fate of estrone in laboratory-scale constructed wetlands. Ecol Eng 111:60–68.  https://doi.org/10.1016/j.ecoleng.2017.11.005 CrossRefGoogle Scholar
  69. Hamid H, Eskicioglu C (2012) Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Res 46:5813–5833.  https://doi.org/10.1016/j.watres.2012.08.002 CrossRefGoogle Scholar
  70. Hamilton PB, Lange A, Nicol E, Bickley LK, Debastos E, Jobling S, Tyler CR (2015) Effects of exposure to WwTW effluents over two generations on sexual development and breeding in roach Rutilus rutilus. Environ Sci Technol 49(21):12994–13002.  https://doi.org/10.1021/acs.est.5b03777 CrossRefGoogle Scholar
  71. Hanselman TA, Graetz DA, Wilkie AC (2003) Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37(24):5471–5478.  https://doi.org/10.1021/es034410+ CrossRefGoogle Scholar
  72. Hassell K, Pettigrove V, Beresford N, Jobling S, Kumar A (2016) No evidence of exposure to environmental estrogens in two feral fish species sampled from the Yarra river, Australia: a comparison with northern Hemisphere studies. Ecotox Environ Safe 131:104–117.  https://doi.org/10.1016/j.ecoenv.2016.05.004 CrossRefGoogle Scholar
  73. Havlíková L, Nováková L, Matysová L, Šícha J, Solich P (2006) Determination of estradiol and its degradation products by liquid chromatography. J Chromatogr A 1119(1–2):216–223.  https://doi.org/10.1016/j.chroma.2006.01.085 CrossRefGoogle Scholar
  74. He GL, Li C, Dong FL, Zhang TQ, Chen L, Cizmas L, Sharma VK (2016) Chloramines in a pilot-scale water distribution system: transformation of 17β-estradiol and formation of disinfection byproducts. Water Res 106:41–50.  https://doi.org/10.1016/j.watres.2016.09.047 CrossRefGoogle Scholar
  75. Hemmings SN, Hartel PG (2006) Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures. J Environ Qual 35(3):701–706.  https://doi.org/10.2134/jeq2005.0303 CrossRefGoogle Scholar
  76. Hoffman TC, Zitomer DH, Mcnamara PJ (2016) Pyrolysis of wastewater biosolids significantly reduces estrogenicity. J Hazard Mater 317:579–584.  https://doi.org/10.1016/j.jhazmat.2016.05.088 CrossRefGoogle Scholar
  77. Holinka CF, Diczfalusy E, Coelingh Bennink HJT (2008) Estetrol: a unique steroid in human pregnancy. J Steroid Biochem 110:138–143.  https://doi.org/10.1016/j.jsbmb.2008.03.027 CrossRefGoogle Scholar
  78. Hom-Diaz A, Llorca M, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P (2015) Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J Environ Manag 155(4):106–113.  https://doi.org/10.1016/j.jenvman.2015.03.003 CrossRefGoogle Scholar
  79. Hu C, Hermann G, Pen-Mouratov S, Shore L, Steinberger Y (2011) Mammalian steroid hormones can reduce abundance and affect the sex ratio in a soil nematode community. Agric Ecosyst Environ 142(3):275–279.  https://doi.org/10.1016/j.agee.2011.05.024 CrossRefGoogle Scholar
  80. Hu SQ, Zhang HC, Shen GX, Yuan ZJ, Xu T, Ji R (2017) Effects of 17β-estradiol and 17α-ethinylestradiol on the embryonic development of the clearhead icefish (Protosalanx hyalocranius). Chemosphere 176:18–24.  https://doi.org/10.1016/j.chemosphere.2017.02.094 CrossRefGoogle Scholar
  81. Huang C, Zhang ZB, Wu SM, Zhao YB, Hu JY (2010) In vitro and in vivo estrogenic effects of 17α-estradiol in medaka (Oryzias latipes). Chemosphere 80:608–612.  https://doi.org/10.1016/j.chemosphere.2010.04.010 CrossRefGoogle Scholar
  82. Hutchins SR, White MV, Hudson FM, Fine DD (2007) Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environ Sci Technol 41(3):738–−744.  https://doi.org/10.1021/es062234 CrossRefGoogle Scholar
  83. International Programme on Chemical Safety/World Health Organisation (2002) Global assessment on the state of the science of endocrine disruptors. Geneva:World Health Organization. http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/. Accessed 31 December 2017
  84. Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 984(2):195–202.  https://doi.org/10.1016/S0021-9673(02)01851-4 CrossRefGoogle Scholar
  85. Isobe T, Serizawa S, Horiguchi T, Shibata Y, Managaki S, Takada H, Morita M, Shiraishi H (2006) Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay. Environ Pollut 144(2):632–638.  https://doi.org/10.1016/j.envpol.2006.01.030 CrossRefGoogle Scholar
  86. Jacobs MN, Marczylo EL, Guerrerobosagna C, Rüegg J (2017) Marked for life: epigenetic effects of endocrine disrupting chemicals. Annu Rev Environ Resour 42(1):105–160.  https://doi.org/10.1146/annurev-environ-102016-061111 CrossRefGoogle Scholar
  87. Jiang LY, Huang CJ, Chen JM, Chen X (2009) Oxidative transformation of 17β-estradiol by MnO2 in aqueous solution. Arch Environ Con Tox 57(2):221–229.  https://doi.org/10.1007/s00244-008-9257-8 CrossRefGoogle Scholar
  88. Johnson AC, Chen YH (2017) Does exposure to domestic wastewater effluent (including steroid estrogens) harm fish populations in the UK? Sci Total Environ 589:89−96.  https://doi.org/10.1016/j.scitotenv.2017.02.142 CrossRefGoogle Scholar
  89. Johnson AC, Williams RJ, Matthiessen P (2006) The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. Sci Total Environ 362(1–3):166–178.  https://doi.org/10.1016/j.scitotenv.2005.06.014 CrossRefGoogle Scholar
  90. Jürgens MD, Holthaus KIE, Johnson AC, Smith JJL, Hetheridge M, Williams RJ (2002) Potential for estradiol and ethinylestradiol degradation in english rivers. Environ Toxicol Chem 21(3):480–488CrossRefGoogle Scholar
  91. Kapelewska J, Kotowska U, Karpińska J, Kowalczuk D, Arciszewska A, Świrydo A (2018) Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem J 137:292–301.  https://doi.org/10.1016/j.microc.2017.11.008 CrossRefGoogle Scholar
  92. Khanal SK, Xie B, Thompson ML, Sung S, Ong SK, Leeuwen JV (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 38(1):6537–6546.  https://doi.org/10.1021/es0607739 CrossRefGoogle Scholar
  93. Köck-Schulmeyer M, Villagrasa M, López dAM, Céspedes-Sánchez R, Ventura F, Barceló D (2013) Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ 458–460(3):466–476.  https://doi.org/10.1016/j.scitotenv.2013.04.010 CrossRefGoogle Scholar
  94. Komori K, Tanaka H, Okayasu Y, Yasojima M, Sato C (2004) Analysis and occurrence of estrogen in wastewater in Japan. Water Sci Technol 50(5):93–100.  https://doi.org/10.2166/wst.2004.0314 CrossRefGoogle Scholar
  95. Kumar V, Nakada N, Yasojima M, Yamashita N, Johnson AC, Tanaka H (2009) Rapid determination of free and conjugated estrogen in different water matrices by liquid chromatography-tandem mass spectrometry. Chemosphere 77(10):1440–1446.  https://doi.org/10.1016/j.chemosphere.2009.08.052 CrossRefGoogle Scholar
  96. Kumar V, Nakada N, Yasojima M, Yamashita N, Johnson AC, Tanaka H (2011) The arrival and discharge of conjugated estrogens from a range of different sewage treatment plants in the UK. Chemosphere 82(8):1124–1128.  https://doi.org/10.1016/j.chemosphere.2010.11.040 CrossRefGoogle Scholar
  97. Kumar V, Johnson AC, Nakada N, Yamashita N, Tanaka H (2012) De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water. J Hazard Mater 227–228(16):49–54.  https://doi.org/10.1016/j.jhazmat.2012.04.078 CrossRefGoogle Scholar
  98. Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol 34(18):3890–3894.  https://doi.org/10.1021/es9912729 CrossRefGoogle Scholar
  99. Lambert MR, Giller GS, Barber LB, Fitzgerald KC, Skelly DK (2015) Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations. P Natl Acad Sci USA 112(38):11881–11886.  https://doi.org/10.1073/pnas.1501065112 CrossRefGoogle Scholar
  100. Lange IG, Daxenberger A, Schiffer B, Witters H, Ibarreta D, Meyer HHD (2002) Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 473(1):27–37.  https://doi.org/10.1016/S0003-2670(02)00748-1 CrossRefGoogle Scholar
  101. Lappano R, Rosano C, De MP, De Francesco EM, Pezzi V, Maggiolini M (2010) Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol 320(2):162–170.  https://doi.org/10.1016/j.mce.2010.02.006 CrossRefGoogle Scholar
  102. Layton AC, Gregory BW, Seward JR, Schultz TW, Sayler GS (2000) Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee U.S.A. Environ Sci Technol 34(18):3925–3931.  https://doi.org/10.1021/es9914487 CrossRefGoogle Scholar
  103. Lee HB, Liu D (2002) Degradation of 17β-estradiol and its metabolites by sewage bacteria. Water Air Soil Pollut 134(1–4):351−366.  https://doi.org/10.1023/A:1014117329403 CrossRefGoogle Scholar
  104. Lee Pow CSD, Tilahun K, Creech K, Law JM, Cope WG, Kwak TJ, Rice JA, Aday DD, Kullman SW (2017) Windows of susceptibility and consequences of early life exposures to 17β-estradiol on medaka (Oryzias latipes) reproductive success. Environ Sci Technol 51(9):5296–5305.  https://doi.org/10.1021/acs.est.7b01568 CrossRefGoogle Scholar
  105. Lee JH, Cho J, Kim SH, Kim SD (2011a) Influence of 17β-estradiol binding by dissolved organic matter isolated from wastewater effluent on estrogenic activity. Ecotox Environ Safe 74(5):1280–1287.  https://doi.org/10.1016/j.ecoenv.2011.02.010 CrossRefGoogle Scholar
  106. Lee JH, Zhou JL, Kim SD (2011b) Effects of biodegradation and sorption by humic acid on the estrogenicity of 17β-estradiol. Chemosphere 85(8):1383–1389.  https://doi.org/10.1016/j.chemosphere.2011.08.003 CrossRefGoogle Scholar
  107. Leet JK, Gall HE, Sepúlveda MS (2011) A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J Appl Toxicol 31(5):379–398.  https://doi.org/10.1002/jat.1682 CrossRefGoogle Scholar
  108. Lei BL, Wen Y, Wang XT, Zha JM, Li W, Wang ZJ, Sun YF, Kang J, Wang YP (2013) Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes). Chemosphere 93(6):1104–1110.  https://doi.org/10.1016/j.chemosphere.2013.06.025 CrossRefGoogle Scholar
  109. Lei BL, Kang J, Yu YX, Zha JM, Li W, Wang ZJ, Wang YP, Wen Y (2014) Long-term exposure investigating the estrogenic potency of estriol in Japanese medaka (Oryzias latipes). Comp Biochem Phys C 160(1):86−92.  https://doi.org/10.1016/j.cbpc.2013.11.001 CrossRefGoogle Scholar
  110. Li Z, Xiang X, Li M, Ma YP, Wang JH, Liu X (2015) Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China. Ecotox Environ Safe 119:74–80.  https://doi.org/10.1016/j.ecoenv.2015.04.031 CrossRefGoogle Scholar
  111. Li M, Xu B, Liungai ZQ, Hu HY, Chen C, Qiao J, Lu Y (2016) The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products. J Hazard Mater 307:119–126.  https://doi.org/10.1016/j.jhazmat.2016.01.003 CrossRefGoogle Scholar
  112. Liu ZH, Lu GN, Yin H, Dang Z, Littier H, Liu Y (2015a) Sample-preparation methods for direct and indirect analysis of natural estrogens. TrAc-Trend Anal Chem 64:149–164.  https://doi.org/10.1016/j.trac.2014.09.003 CrossRefGoogle Scholar
  113. Liu ZH, Lu GN, Yin H, Dang Z, Rittmann B (2015b) Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review. Environ Sci Technol 49(9):5288–5300.  https://doi.org/10.1021/acs.est.5b00399 CrossRefGoogle Scholar
  114. Liu ZH, Lu GN, Yin H, Dang Z (2015c) Estimated human excretion rates of natural estrogens calculated from their concentrations in raw municipal wastewater and its application. Environ Sci Pollut R 22(12):9554–9562.  https://doi.org/10.1007/s11356-015-4369-y CrossRefGoogle Scholar
  115. Liu XW, Shi JH, Bo T, Meng YB, Zhan XM, Zhang MT, Zhang Y (2017) Distributions and ecological risk assessment of estrogens and bisphenol A in an arid and semiarid area in Northwest China. Environ Sci Pollut R 24(8):7216–7225.  https://doi.org/10.1007/s11356-017-8434-6 CrossRefGoogle Scholar
  116. Lucas SD, Jones DL (2006) Biodegradation of estrone and 17β-estradiol in grassland soils amended with animal wastes. Soil Biol Biochem 38(9):2803–2815.  https://doi.org/10.1016/j.soilbio.2006.04.033 CrossRefGoogle Scholar
  117. Luo YL, Guo WS, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474(3):619–641.  https://doi.org/10.1016/j.scitotenv.2013.12.065 CrossRefGoogle Scholar
  118. Ma L, Yates SR (2017) Degradation and metabolite formation of estrogen conjugates in an agricultural soil. J Pharmaceut Biomed 145:634–640.  https://doi.org/10.1016/j.jpba.2017.07.058 CrossRefGoogle Scholar
  119. Ma L, Yates SR (2018) Degradation and metabolite formation of 17β-estradiol-3-glucuronide and 17β-estradiol-3-sulphate in river water and sediment. Water Res 139:1–9.  https://doi.org/10.1016/j.watres.2018.03.071 CrossRefGoogle Scholar
  120. Ma L, Yates SR, Ashworth D (2016) Parent and conjugated estrogens and progestagens in surface water of the Santa Ana River: determination, occurrence, and risk assessment. Environ Toxicol Chem 35(11):2657–2664.  https://doi.org/10.1002/etc.3447 CrossRefGoogle Scholar
  121. Mansell DS, Bryson RJ, Harter T, Webster JP, Koodziej EP, Sedlak DL (2011) Fate of endogenous steroid hormones in steer feedlots under simulated rainfall-induced runoff. Environ Sci Technol 45:8811–8818.  https://doi.org/10.1021/es202072f CrossRefGoogle Scholar
  122. Marfil-Vega R, Suidan MT, Mills MA (2010) Abiotic transformation of estrogens in synthetic municipal wastewater: an alternative for treatment? Environ Pollut 158(11):3372–3377.  https://doi.org/10.1016/j.envpol.2010.07.042 CrossRefGoogle Scholar
  123. Marfil-Vega R, Suidan MT, Mills MA (2011) Assessment of the abiotic transformation of 17β-estradiol in the presence of vegetable matter. Chemosphere 82(10):1468–1474.  https://doi.org/10.1016/j.chemosphere.2010.11.051 CrossRefGoogle Scholar
  124. Marfil-Vega R, Suidan MT, Mills MA (2012) Assessment of the abiotic transformation of 17β-estradiol in the presence of vegetable matter - II: the role of molecular oxygen. Chemosphere 87(5):521–526.  https://doi.org/10.1016/j.chemosphere.2011.12.054 CrossRefGoogle Scholar
  125. Mashtare ML, Khan B, Lee LS (2011) Evaluating stereoselective sorption by soils of 17α-estradiol and 17β-estradiol. Chemosphere 82(6):847–852.  https://doi.org/10.1016/j.chemosphere.2010.11.021 CrossRefGoogle Scholar
  126. Mashtare ML, Green DA, Lee LS (2013a) Biotransformation of 17α- and 17β-estradiol in aerobic soils. Chemosphere 90(2):647−652.  https://doi.org/10.1016/j.chemosphere.2012.09.032 CrossRefGoogle Scholar
  127. Mashtare ML, Lee LS, Nies LF, Turco RF (2013b) Transformation of 17α-estradiol, 17β-estradiol, and estrone in sediments under nitrate- and sulfate-reducing conditions. Environ Sci Technol 47(13):7178−7185.  https://doi.org/10.1021/es4008382 CrossRefGoogle Scholar
  128. Mezghani-Chaari S, Machreki-Ajimi M, Hamza-Chaffai A, Minier C (2017) High estradiol exposure disrupts the reproductive cycle of the clam Ruditapes decussatus in a sex-specific way. Environ Sci Pollut R 24(34):26670–26680.  https://doi.org/10.1007/s11356-017-0146-4 CrossRefGoogle Scholar
  129. Mina O, Gall HE, Saporito LS, Elliott HA, Kleinman PJA (2017) Relative role of transport and source-limited controls for estrogen, TDP, and DOC export for two manure application methods. Agric Ecosyst Environ 247:308–318.  https://doi.org/10.1016/j.agee.2017.06.045 CrossRefGoogle Scholar
  130. Mina O, Gall HE, Elliott HA, Watson JE, Mashtare ML, Langkilde T, Harper JP, Boyer EW (2018) Estrogen occurrence and persistence in vernal pools impacted by wastewater irrigation practices. Agric Ecosyst Environ 257:103–112.  https://doi.org/10.1016/j.agee.2018.01.022 CrossRefGoogle Scholar
  131. Mitsui N, Tooi O, Kawahara A (2007) Vitellogenin-inducing activities of natural, synthetic, and environmental estrogens in primary cultured Xenopus laevis hepatocytes. Comp Biochem Phys C 146:581–587.  https://doi.org/10.1016/j.cbpc.2007.07.004 CrossRefGoogle Scholar
  132. Naldi AC, Fayad PB, Prévost M, Sauvé S (2016) Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem Cent J 10(30):1–17.  https://doi.org/10.1186/s13065-016-0174-z CrossRefGoogle Scholar
  133. Neale PA, Escher BI, Schäfer AI (2008) Quantification of solute-solute interactions using negligible-depletion solid-phase microextraction: measuring the affinity of estradiol to bulk organic matter. Environ Sci Technol 42(8):2886–2892.  https://doi.org/10.1021/es0717313 CrossRefGoogle Scholar
  134. Noguera-Oviedo K, Aga DS (2016) Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment. Sci Total Environ 550:827–834.  https://doi.org/10.1016/j.scitotenv.2016.01.084 CrossRefGoogle Scholar
  135. Oliveira C, Lima DLD, Silva CP, Otero M, Esteves VI (2016) Photodegradation behaviour of estriol: an insight on natural aquatic organic matter influence. Chemosphere 159:545–551.  https://doi.org/10.1016/j.chemosphere.2016.06.046 CrossRefGoogle Scholar
  136. Oziol L, Alliot F, Botton J, Bimbot M, Huteau V, Levi Y, Chevreuil M (2017) First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France). Environ Sci Pollut R 24(3):3142–3152.  https://doi.org/10.1007/s11356-016-8045-7 CrossRefGoogle Scholar
  137. Pamplona-Silva MT, Bianchi J, Marin-Morales MA (2018) Estrogenic compounds: chemical characteristics, detection methods, biological and environmental effects. Water Air Soil Pollut 229(144):1−27.  https://doi.org/10.1007/s11270-018-3796-z CrossRefGoogle Scholar
  138. Petrie B, Mcadam EJ, Hassard F, Stephenson T, Lester JN, Cartmell E (2014) Diagnostic investigation of steroid estrogen removal by activated sludge at varying solids retention time. Chemosphere 113:101–108.  https://doi.org/10.1016/j.chemosphere.2014.04.051 CrossRefGoogle Scholar
  139. Pollard MAT, Morra MJ (2017) Estrogens: properties, behaviors, and fate in dairy manure-amended soils. Environ Rev 25(4):452–462.  https://doi.org/10.1139/er-2017-0005 CrossRefGoogle Scholar
  140. Prater JR, Horton R, Thompson ML (2015) Reduction of estrone to 17 β-estradiol in the presence of swine manure colloids. Chemosphere 119:642–645.  https://doi.org/10.1016/j.chemosphere.2014.07.072 CrossRefGoogle Scholar
  141. Qiao XL, Carmosini N, Li F, Lee LS (2011) Probing the primary mechanisms affecting the environmental distribution of estrogen and androgen isomers. Environ Sci Technol 45(9):3989–3995.  https://doi.org/10.1021/es200073h CrossRefGoogle Scholar
  142. Qin C, Troya D, Shang C, Hildreth S, Helm R, Xia K (2015) Surface catalyzed oxidative oligomerization of 17β-estradiol by Fe3+-saturated montmorillonite. Environ Sci Technol 49(2):956–964.  https://doi.org/10.1021/es504815t CrossRefGoogle Scholar
  143. Reddy S, Iden CR, Brownawell BJ (2005) Analysis of steroid conjugates in sewage influent and effluent by liquid chromatography-tandem mass spectrometry. Anal Chem 77(21):7032–7038.  https://doi.org/10.1021/ac050699x CrossRefGoogle Scholar
  144. Regnery J, Gerba CP, Dickenson ERV, Drewes JE (2017) The importance of key attenuation factors for microbial and chemical contaminants during managed aquifer recharge: a review. Crit Rev Env Sci Tec 47(15):1409–1452.  https://doi.org/10.1080/10643389.2017.1369234 CrossRefGoogle Scholar
  145. Renwick AGC, Engel LL (1967) The partial purification of 17α- and 17β-estradiol dehydrogenase activities from chicken liver. BBA-Enzymology 146(2):336–348.  https://doi.org/10.1016/0005-2744(67)90220-3 CrossRefGoogle Scholar
  146. Robinson JA, Ma Q, Staveley JP, Smolenski WJ, Ericson J (2017) Degradation and transformation of 17α-estradiol in water-sediment systems under controlled aerobic and anaerobic conditions. Environ Toxicol Chem 36(3):621–629.  https://doi.org/10.1002/etc.3383 CrossRefGoogle Scholar
  147. Ros O, Aguirre J, Prieto A, Olivares M, Etxebarrial N, Vallejo A (2015) Simultaneous enzymatic hydrolysis and extraction of endocrine-disrupting chemicals in fish bile using polyethersulfone polymer. Anal Bioanal Chem 407:7413–7423.  https://doi.org/10.1007/s00216-015-8905-x CrossRefGoogle Scholar
  148. Rose K, Farenhorst A (2014) Estrone and 17β-estradiol mineralization in liquid swine manure and soil in the presence and absence of penicillin or tetracycline. J Environ Sci Heal B 49(5):331–337.  https://doi.org/10.1080/03601234.2014.882161 CrossRefGoogle Scholar
  149. Ruan AD, Zhao Y, Liu CX, Zong FJ, Yu ZB (2015) Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body. Environmen Toxicol Chem 34(5):977–982.  https://doi.org/10.1002/etc.2882 CrossRefGoogle Scholar
  150. Salgueiro-González N, López de Alda M, Muniategui-Lorenzo S, Prada-Rodríguez D, Barceló D (2013) Determination of 13 estrogenic endocrine disrupting compounds in atmospheric particulate matter by pressurised liquid extraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 405(27):8913–8923.  https://doi.org/10.1007/s00216-013-7298-y CrossRefGoogle Scholar
  151. Salgueiro-González N, López de Alda MJ, Muniategui-Lorenzo S, Prada-Rodríguez D, Barceló D (2015) Analysis and occurrence of endocrine-disrupting chemicals in airborne particles. TrAc-Trend Anal Chem 66:45–52.  https://doi.org/10.1016/j.trac.2014.11.006 CrossRefGoogle Scholar
  152. Salomão ALS, Soroldoni S, Marques M, Hogland W, Bila DM (2014) Effects of single and mixed estrogens on single and combined cultures of D. subspicatus and P. subcapitata. B Environ Contam Tox 93(2):215–221.  https://doi.org/10.1007/s00128-014-1294-6 CrossRefGoogle Scholar
  153. Sangster JL, Oke H, Zhang Y, Bartelt-Hunt SL (2015) The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment. J Hazard Mater 299:112–121.  https://doi.org/10.1016/j.jhazmat.2015.05.046 CrossRefGoogle Scholar
  154. Scherr FF, Sarmah AK, Di HJ, Cameron KC (2008) Modeling degradation and metabolite formation kinetics of Estrone-3-sulfate in agricultural soils. Environ Sci Technol 42(22):8388–8394.  https://doi.org/10.1021/es801850a CrossRefGoogle Scholar
  155. Scherr FF, Sarmah AK, Di HJ, Cameron KC (2009a) Degradation and metabolite formation of 17β-estradiol-3-sulphate in New Zealand pasture soils. Environ Int 35(2):291–297.  https://doi.org/10.1016/j.envint.2008.07.002 CrossRefGoogle Scholar
  156. Scherr FF, Sarmah AK, Di HJ, Cameron KC, Brooks B (2009b) Sorption of estrone and Estrone-3-sulfate from CaCl2 solution and artificial urine in pastoral soils of New Zealand. Environ Toxicol Chem 28(12):2564–2571.  https://doi.org/10.1897/08-534.1 CrossRefGoogle Scholar
  157. Schlüsener MP, Bester K (2008) Behavior of steroid hormones and conjugates during wastewater treatment – a comparison of three sewage treatment plants. CLEAN-Soil Air Water 36(1):25–33.  https://doi.org/10.1002/clen.200700096 CrossRefGoogle Scholar
  158. Schröder P, Helmreich B, Škrbić B, Carballa M, Papa M, Pastore C, Emre Z, Oehmen A, Langenhoff A, Molinos M, Dvarioniene J, Huber C, Tsagarakis KP, Martinez-Lopez E, Meric Pagano S, Vogelsang C, Mascolo G (2016) Status of hormones and painkillers in wastewater effluents across several European states−considerations for the EU watch list concerning estradiols and diclofenac. Environ Sci Pollut R 23(13):12835–12866.  https://doi.org/10.1007/s11356-016-6503-x CrossRefGoogle Scholar
  159. Shappell NW, Hyndman KM, Bartell SE, Schoenfuss HL (2010) Comparative biological effects and potency of 17α- and 17β-estradiol in fathead minnows. Aquat Toxicol 99(1):1–8.  https://doi.org/10.1016/j.aquatox.2010.07.005 CrossRefGoogle Scholar
  160. Shappell NW, Billey LO, Shipitalo MJ (2016) Estrogenic activity and nutrient losses in surface runoff after winter manure application to small watersheds. Sci Total Environ 543:570−580.  https://doi.org/10.1016/j.scitotenv.2015.10.130 CrossRefGoogle Scholar
  161. Shappell NW, Feifarek DJ, Rearick DC, Bartell SE, Schoenfuss HL (2018) Do environmental factors affect male fathead minnow (Pimephales promelas) response to estrone? Part 2. Temperature and food availability. Sci Total Environ 610–611:32–43.  https://doi.org/10.1016/j.scitotenv.2017.08.021 CrossRefGoogle Scholar
  162. Shareef A, Angove MJ, Wells JD, Johnson BB (2006) Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. J Chem Eng Data 51(3):879–881.  https://doi.org/10.1021/je050318c CrossRefGoogle Scholar
  163. Sheng GD, Xu C, Xu L, Qiu YP, Zhou HY (2009) Abiotic oxidation of 17β-estradiol by soil manganese oxides. Environ Pollut 157(10):2710–2715.  https://doi.org/10.1016/j.envpol.2009.04.030 CrossRefGoogle Scholar
  164. Shi JH, Chen QC, Liu XW, Zhan XM, Li J, Li ZB (2013) Sludge/water partition and biochemical transformation of estrone and 17β-estradiol in a pilot-scale step-feed anoxic/oxic wastewater treatment system. Biochem Eng J 74:107–114.  https://doi.org/10.1016/j.bej.2013.03.001 CrossRefGoogle Scholar
  165. Shore LS, Shemesh M (2003) Naturally produced steroid hormones and their release into the environment. Pure Appl Chem 75(11–12):1859–1871.  https://doi.org/10.1351/pac200375111859 CrossRefGoogle Scholar
  166. Shrestha SL, Casey FXM, Hakk H, Smith DJ, Padmanabhan G (2012) Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils. Environ Sci Technol 46(20):11047–11053.  https://doi.org/10.1021/es3021765 CrossRefGoogle Scholar
  167. Silva CP, Otero M, Esteves V (2012) Processes for the elimination of estrogenic steroid hormones from water: A review. Environ Pollut 165:38–58.  https://doi.org/10.1016/j.envpol.2012.02.002
  168. Silva CP, Lima DLD, Groth MB, Otero M, Esteves VI (2016) Effect of natural aquatic humic substances on the photodegradation of estrone. Chemosphere 145(3):249−255.  https://doi.org/10.1016/j.chemosphere.2015.11.068 CrossRefGoogle Scholar
  169. Song XM, Wen YJ, Wang YY, Mohammed A, Yang YS (2018) Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: analytical and modelling approaches. Chemosphere 198:1−10.  https://doi.org/10.1016/j.chemosphere.2018.01.060 CrossRefGoogle Scholar
  170. Souissi Y, Kinani S, Bouchonnet S, Bourcier S, Malosse C, Sablier M, Creusot N, Mombelli E, Aït-Aïssa S (2014) Photolysis of estrone generates estrogenic photoproducts with higher activity than the parent compound. Environ Sci Pollut Res 21(13):7818–7827.  https://doi.org/10.1007/s11356-014-2722-1 CrossRefGoogle Scholar
  171. Stanford BD, Amoozegar A, Weinberg HS (2010) The impact of co-contaminants and septic system effluent quality on the transport of estrogens and nonylphenols through soil. Water Res 44(5):1598–1606.  https://doi.org/10.1016/j.watres.2009.11.011 CrossRefGoogle Scholar
  172. Stumpe B, Marschner B (2009) Factors controlling the biodegradation of 17β-estradiol, estrone and 17α-ethinylestradiol in different natural soils. Chemosphere 74(4):556–562.  https://doi.org/10.1016/j.chemosphere.2008.09.072 CrossRefGoogle Scholar
  173. Stumpe B, Marschner B (2010a) Organic waste effects on the behavior of 17β-estradiol, estrone, and 17α-ethinylestradiol in agricultural soils in long- and short-term setups. J Environ Qual 39(3):907–916.  https://doi.org/10.2134/jeq2009.0225 CrossRefGoogle Scholar
  174. Stumpe B, Marschner B (2010b) Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils. Environ Pollut 158(1):148–154.  https://doi.org/10.1016/j.envpol.2009.07.027 CrossRefGoogle Scholar
  175. Sun K, Liang ST, Kang FX, Gao YZ, Huang QG (2016) Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling. Environ Pollut 214:211–218.  https://doi.org/10.1016/j.envpol.2016.04.021 CrossRefGoogle Scholar
  176. Tan DT, Temme HR, Arnold WA, Novak PJ (2015) Estrone degradation: does organic matter (quality):matter? Environ Sci Technol 49(1):498–503.  https://doi.org/10.1021/es504424v CrossRefGoogle Scholar
  177. Ternes TA, Joss A, Siegrist H (2004) Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38(20):392A–399A.  https://doi.org/10.1021/es040639t CrossRefGoogle Scholar
  178. The Japanese Ministry of the Environment (2016) http://www.env.go.jp/chemi/end/extend2016.html. Accessed 28 March 2018 (In Japanese)
  179. The State Council of The People’s Republic of China (2015) http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm. Accessed 16 January 2018 (In Chinese)
  180. Tran NH, Reinhard M, Gin KYH (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207.  https://doi.org/10.1016/j.watres.2017.12.029 CrossRefGoogle Scholar
  181. Tso J, Dutta S, Inamdar S, Aga DS (2011) Simultaneous analysis of free and conjugated estrogens, sulfonamides, and tetracyclines in runoff water and soils using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Agr Food Chem 59(6):2213–2222.  https://doi.org/10.1021/jf104355x CrossRefGoogle Scholar
  182. United Nations Department of Economic and Social Affairs (2019) https://population.un.org/wpp/Download/Standard/Population/. Accessed 13 Jan 2019
  183. Valcárcel Y, Valdehíta A, Becerra E, López de Alda M, Gil A, Gorga M, Petrovic M, Barceló D, Navas JM (2018) Determining the presence of chemicals with suspected endocrine activity in drinking water from the Madrid region (Spain) and assessment of their estrogenic, androgenic and thyroidal activities. Chemosphere 201:388–398.  https://doi.org/10.1016/j.chemosphere.2018.02.099 CrossRefGoogle Scholar
  184. Van Emmerik T, Angove MJ, Johnson BB, Wells JD, Fernandes MB (2003) Sorption of 17β-estradiol onto selected soil minerals. J Colloid Interf Sci 266(1):33–39.  https://doi.org/10.1016/S0021-9797(03)00597-6 CrossRefGoogle Scholar
  185. Verlicchi P, Aukidy MA, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155.  https://doi.org/10.1016/j.scitotenv.2012.04.028 CrossRefGoogle Scholar
  186. Vilela CLS, Bassin JP, Peixoto RS (2018) Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection. Environ Pollut 235:546–559.  https://doi.org/10.1016/j.envpol.2017.12.098 CrossRefGoogle Scholar
  187. Wang SY, Wang XH, Li CG, Xu XX, Wei ZB, Wang ZY, Qu RJ (2018a) Photodegradation of 17β-estradiol on silica gel and natural soil by UV treatment. Environ Pollut 242(Part B):1236–1244.  https://doi.org/10.1016/j.envpol.2018.08.018 CrossRefGoogle Scholar
  188. Wang XH, Yao JY, Wang SY, Pan XX, Xiao RY, Huang QG, Wang ZY, Qu RJ (2018b) Phototransformation of estrogens mediated by Mn (III):not by reactive oxygen species, in the presence of humic acids. Chemosphere 201:224–233.  https://doi.org/10.1016/j.chemosphere.2018.03.003 CrossRefGoogle Scholar
  189. WHO (World Health Organization)/UNEP (United Nations Environment Programme) (2013) State of the Science of Endocrine Disrupting Chemicals−2012 (Bergman, Å, Heindel, J. J, Jobling, S, Kidd, K. A, Zoeller, R. T, eds). Geneva:UNEP/WHO. http://www.who.int/ceh/publications/endocrine/en/index.html. Accessed 30 March 2018
  190. Wooten KJ, Blackwell BR, Mceachran AD, Mayer GD, Smith PN (2015) Airborne particulate matter collected near beef cattle feedyards induces androgenic and estrogenic activity in vitro. Agric Ecosyst Environ 203:29–35.  https://doi.org/10.1016/j.agee.2015.01.016 CrossRefGoogle Scholar
  191. Writer JH, Barber LB, Ryan JN, Bradley PM (2011) Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. Environ Sci Technol 45(10):4370–4376.  https://doi.org/10.1021/es2000134 CrossRefGoogle Scholar
  192. Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44.  https://doi.org/10.1016/j.tibtech.2017.09.003 CrossRefGoogle Scholar
  193. Xuan R, Blassengale AA, Wang Q (2008) Degradation of estrogenic hormones in a silt loam soil. J Agr Food Chem 56(19):9152–9158.  https://doi.org/10.1021/jf8016942 CrossRefGoogle Scholar
  194. Yamamoto A, Kakutani N, Yamamoto K, Kamiura T, Miyakoda H (2006) Steroid hormone profiles of urban and tidal rivers using LC/MS/MS equipped with electrospray ionization and atmospheric pressure photoionization sources. Environ Sci Technol 40(13):4132–4137.  https://doi.org/10.1021/es052593p CrossRefGoogle Scholar
  195. Yang YY, Gray JL, Furlong ET, Davis JG, Revello RC, Borch T (2012) Steroid hormone runoff from agricultural test plots applied with municipal biosolids. Environ Sci Technol 46(5):2746–2754.  https://doi.org/10.1021/es203896t CrossRefGoogle Scholar
  196. Yang WB, Zhou HD, Cicek N (2014) Treatment of organic micropollutants in water and wastewater by UV-based processes: a literature review. Critl Rev Env Sci Tec 44(13):1443–1476.  https://doi.org/10.1080/10643389.2013.790745 CrossRefGoogle Scholar
  197. Yang LH, Cheng Q, Tam NFY, Lin L, Su WQ, Luan TG (2016) Contributions of abiotic and biotic processes to the aerobic removal of phenolic endocrine-disrupting chemicals in a simulated estuarine aquatic environment. Environ Sci Technol 50(8):4324–4334.  https://doi.org/10.1021/acs.est.5b06196 CrossRefGoogle Scholar
  198. Yao B, Li R, Yan SW, Chan SA, Song WH (2018) Occurrence and estrogenic activity of steroid hormones in Chinese streams: a nationwide study based on a combination of chemical and biological tools. Environ Int 118:1−8.  https://doi.org/10.1016/j.envint.2018.05.026 CrossRefGoogle Scholar
  199. Yost EE, Meyer MT, Dietze JE, Meissner BM, Worley-Davis L, Williams CM, Lee B, Kullman SW (2013) Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon. Environ Sci Technol 47(23):13781–13790.  https://doi.org/10.1021/es4026408 CrossRefGoogle Scholar
  200. Yost EE, Meyer MT, Dietze JE, Williams CM, Worley-Davis L, Lee B, Kullman SW (2014) Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system. Environ Sci Technol 48(19):11600–11609.  https://doi.org/10.1021/es5025806 CrossRefGoogle Scholar
  201. Yu CP, Deeb RA, Chu KH (2013) Microbial degradation of steroidal estrogens. Chemosphere 91(9):1225–1235.  https://doi.org/10.1016/j.chemosphere.2013.01.112 CrossRefGoogle Scholar
  202. Zhang W, Tang XY, Weisbrod N, Guan Z (2012) A review of colloid transport in fractured rocks. J Mt Sci 9(6):770–787.  https://doi.org/10.1007/s11629-012-2443-1 CrossRefGoogle Scholar
  203. Zhang H, Shi JH, Liu XW, Zhan XM, Chen QC (2014a) Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China. Water Res 58(7):248−257.  https://doi.org/10.1016/j.watres.2014.03.074 CrossRefGoogle Scholar
  204. Zhang Q, Zhao JL, Ying GG, Liu YS, Pan CG (2014b) Emission estimation and multimedia fate modeling of seven steroids at the river basin scale in China. Environ Sci Technol 48(14):7982–7992.  https://doi.org/10.1021/es501226h CrossRefGoogle Scholar
  205. Zhang C, Li Y, Wang C, Niu LH, Cai W (2016) Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review. Crit Rev Env Sci Tec 46(1):1–59.  https://doi.org/10.1080/10643389.2015.1061881 CrossRefGoogle Scholar
  206. Zhang Y, Sangster JL, Gauza L, Bartelt-Hunt SL (2016a) Impact of sediment particle size on biotransformation of 17β-estradiol and 17β-trenbolone. Sci Total Environ 572:207–215.  https://doi.org/10.1016/j.scitotenv.2016.08.004 CrossRefGoogle Scholar
  207. Zhang Y, Snow DD, Bartelt-Hunt SL (2016b) Stereoselective degradation of estradiol and trenbolone isomers in alluvial sediment. Environ Sci Technol 50(24):13256–13264.  https://doi.org/10.1021/acs.est.6b02171 CrossRefGoogle Scholar
  208. Zhang HJ, Wang L, Li Y, Wang F, Wang C (2019) Background nutrients and bacterial community evolution determine 13C-17β-estradiol mineralization in lake sediment microcosms. Sci Total Environ 651:2304−2311.  https://doi.org/10.1016/j.scitotenv.2018.10.098 CrossRefGoogle Scholar
  209. Zheng W, Li X, Yates SR, Bradford SA (2012) Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water. Environ Sci Technol 46(10):5471–5478.  https://doi.org/10.1021/es301551h CrossRefGoogle Scholar
  210. Zheng W, Zou Y, Li X, Machesky ML (2013) Fate of estrogen conjugate 17α-estradiol-3-sulfate in dairy wastewater: comparison of aerobic and anaerobic degradation and metabolite formation. J Hazard Mater 258–259(1):109–115.  https://doi.org/10.1016/j.jhazmat.2013.04.038 CrossRefGoogle Scholar
  211. Zhou ZC, Chen BN, Qu XL, Fu HY, Zhu DQ (2018) Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution. Environ Sci Technol 52(18):10391–10399.  https://doi.org/10.1021/acs.est.8b01928 CrossRefGoogle Scholar
  212. Zhu B, Ben WW, Yuan XJ, Zhang Y, Yang M, Qiang ZM (2015) Simultaneous detection of endocrine disrupting chemicals including conjugates in municipal wastewater and sludge with enhanced sample pretreatment and UPLC-MS/MS. Environ Sci-Proc Imp 17(8):1377–1385.  https://doi.org/10.1039/c5em00139k CrossRefGoogle Scholar
  213. Zitnick KK, Shappell NW, Hakk H, Desutter TM, Khan E, Casey FXM (2011) Effects of liquid swine manure on dissipation of 17β-estradiol in soil. J Hazard Mater 186(2–3):1111–1117.  https://doi.org/10.1016/j.jhazmat.2010.11.112 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weiwei Yu
    • 1
  • Banghao Du
    • 1
    Email author
  • Lun Yang
    • 1
  • Zhi Zhang
    • 2
  • Chun Yang
    • 2
  • Shaochun Yuan
    • 1
  • Minne Zhang
    • 1
  1. 1.Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean EngineeringChongqing Jiaotong UniversityChongqingChina
  2. 2.Key Laboratory of Three Gorges Reservoir Region’s Eco-Environments of the Ministry of EducationChongqing UniversityChongqingChina

Personalised recommendations