Environmental Science and Pollution Research

, Volume 26, Issue 10, pp 9391–9408 | Cite as

The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—a review

  • Josephine AL-Alam
  • Asma Chbani
  • Ziad Faljoun
  • Maurice MilletEmail author
Review Article


The continuous discharge of diverse chemical products in the environment is nowadays of great concern to the whole world as some of them persist in the environment leading to serious diseases. Several sampling techniques have been used for the characterization of this chemical pollution, although biomonitoring using natural samplers has recently become the technique of choice in this field due to its efficiency, specificity, and low cost. In fact, several living organisms known as biomonitors could accumulate the well-known persistent environmental pollutants allowing their monitoring in the environment. In this work, a review on environmental biomonitoring is presented. The main sampling techniques used for monitoring environmental pollutants are first reported, followed by an overview on well-known natural species used as passive samplers and known as biomonitors. These species include conifer needles, lichen, mosses, bees and their byproducts, and snails, and were widely used in recent research as reliable monitors for environmental pollution.


Biomonitors Conifers Lichens Mosses Bees Snails Environmental pollution 



We gratefully acknowledge Strasbourg University for the international mobility aid, without which the present study could not have been completed.

Funding information

This study received financial support from AZM et al. SAADE association and the Lebanese University.


  1. Abdel-Halim KY, Abo El-Saad AM, Talha MM, Hussein AA, Bakry NM (2013) Oxidative stress on land snail Helix aspersa as a sentinel organism for ecotoxicological effects of urban pollution with heavy metals. Chemosphere 93:1131–1138CrossRefGoogle Scholar
  2. Al Dine EJ, Mokbel H, Elmoll A, Massemin S, Vuilleumier S, Toufaily J, Hanieh T, Millet M (2015) Concomitant evaluation of atmospheric levels of polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons in Strasbourg (France) using pine needle passive samplers. Environ Sci Pollut Res 22:17850–17859CrossRefGoogle Scholar
  3. Al-Alam J, Fajloun Z, Chbani A, Millet M (2017) The use of conifer needles as biomonitor candidates for the study of temporal air pollution variation in the Strasbourg region. Chemosphere 168:1411–1421CrossRefGoogle Scholar
  4. Allison PG, Seiter JM, Diaz A, Lindsay JH, Moser RD, Tappero RV, Kennedy AJ (2016) Gastropod (Otala lactea) shell nanomechanical and structural characterization as a biomonitoring tool for dermal and dietary exposure to a model metal. J Mech Behav Biomed Mater 53:142–150CrossRefGoogle Scholar
  5. Ares Á, Ángel Fernández J, Ramón Aboal J, Carballeira A (2011) Study of the air quality in industrial areas of Santa Cruz de Tenerife (Spain) by active biomonitoring with Pseudoscleropodium purum. Ecotoxicol Environ Saf 74:533–541CrossRefGoogle Scholar
  6. Augusto S, Máguas C, Branquinho C (2013) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – a review. Environ Pollut 180:330–338CrossRefGoogle Scholar
  7. Augusto S, Pinho P, Santos A, Botelho MJ, Palma-Oliveira J, Branquinho C (2015a) Declining trends of PCDD/Fs in lichens over a decade in a Mediterranean area with multiple pollution sources. Sci Total Environ 508:95–100CrossRefGoogle Scholar
  8. Augusto S, Sierra J, Nadal M, Schuhmacher M (2015b) Tracking polycyclic aromatic hydrocarbons in lichens: it’s all about the algae. Environ Pollut 207:441–445CrossRefGoogle Scholar
  9. Badamasi H (2017) Biomonitoring of air pollution using plants. MAYFEB J Environ Sci 2Google Scholar
  10. Badiou-Bénéteau A, Benneveau A, Géret F, Delatte H, Becker N, Brunet J-L, Reynaud B, Belzunces L (2013) Honeybee biomarkers as promising tools to monitor environmental quality. Environ Int 60:31–41CrossRefGoogle Scholar
  11. Bao L-J, Zeng EY (2014) Field application of passive sampling techniques for sensing hydrophobic organic contaminants. Trends in Environmental Analytical Chemistry 1:e19–e24CrossRefGoogle Scholar
  12. Bargagli R (2016) Moss and lichen biomonitoring of atmospheric mercury: a review. Sci Total Environ 572:216–231CrossRefGoogle Scholar
  13. Bealey W, Long S, Spurgeon D, Leith I, Cape J (2008): Review and implementation study of biomonitoring for assessment of air quality outcomes. Environment Agency, Bristol, pp 170Google Scholar
  14. Beeby A (2001) What do sentinels stand for? Environ Pollut 112:285–298CrossRefGoogle Scholar
  15. Beeby A, Richmond L (2002) Evaluating Helix aspersa as a sentinel for mapping metal pollution. Ecol Indic 1:261–270CrossRefGoogle Scholar
  16. Bergamaschi L, Rizzio E, Giaveri G, Profumo A, Loppi S, Gallorini M (2004) Determination of baseline element composition of lichens using samples from high elevations. Chemosphere 55:933–939CrossRefGoogle Scholar
  17. Boltersdorf SH, Pesch R, Werner W (2014) Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany. Environ Pollut 189:43–53CrossRefGoogle Scholar
  18. Bonanno G, Orlando-Bonaca M (2018) Perspectives on using marine species as bioindicators of plastic pollution. Mar Pollut Bull 137:209–221CrossRefGoogle Scholar
  19. Chauzat MP, Faucon JP (2007) Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera L.) in France. Pest Manag Sci 63:1100–1106CrossRefGoogle Scholar
  20. Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, Aubert M, Carpentier P, Faucon JP (2011) An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ Toxicol Chem 30:103–111CrossRefGoogle Scholar
  21. Chiesa LM, Labella GF, Giorgi A, Panseri S, Pavlovic R, Bonacci S, Arioli F (2016) The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 154:482–490CrossRefGoogle Scholar
  22. Chropeňová M, Gregušková EK, Karásková P, Přibylová P, Kukučka P, Baráková D, Čupr P (2016) Pine needles and pollen grains of Pinus mugo Turra – a biomonitoring tool in high mountain habitats identifying environmental contamination. Ecol Indic 66:132–142CrossRefGoogle Scholar
  23. Codling G, Al Naggar Y, Giesy JP, Robertson AJ (2016) Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere 144:2321–2328CrossRefGoogle Scholar
  24. Coeurdassier M, Saint-Denis M, Vaufleury AGD, Ribera D, Badot PM (2001) The garden snail (Helix aspersa) as a bioindicator of organophosphorus exposure: effects of dimethoate on survival, growth, and acetylcholinesterase activity. Environ Toxicol Chem 20:1951–1957CrossRefGoogle Scholar
  25. De Nicola F, Claudia L, MariaVittoria P, Giulia M, Anna A (2011) Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmos Environ 45:1428–1433CrossRefGoogle Scholar
  26. De Nicola F, Murena F, Costagliola MA, Alfani A, Baldantoni D, Prati MV, Sessa L, Spagnuolo V, Giordano S (2013) A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environ Sci Pollut Res 20:4969–4979CrossRefGoogle Scholar
  27. De Nicola F, Concha Graña E, Aboal JR, Carballeira A, Fernández JÁ, López Mahía P, Prada Rodríguez D, Muniategui Lorenzo S (2016) PAH detection in Quercus robur leaves and Pinus pinaster needles: a fast method for biomonitoring purpose. Talanta 153:130–137CrossRefGoogle Scholar
  28. de Oliveira RC, Queiroz SCN, da Luz CFP, Porto RS, Rath S (2016) Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 163:525–534CrossRefGoogle Scholar
  29. De Vaufleury A, Coeurdassier M, Pandard P, Scheifler R, Lovy C, Crini N, Badot PM (2006) How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem 25:797–806CrossRefGoogle Scholar
  30. Deng Z, Chen F, Zhang M, Lan L, Qiao Z, Cui Y, An J, Wang N, Fan Z, Zhao X, Li X (2016) Association between air pollution and sperm quality: a systematic review and meta-analysis. Environ Pollut 208(Part B):663–669CrossRefGoogle Scholar
  31. DePalma A (2017) Atomic spectroscopy: which instrument to choose? The Automated Lab.
  32. Dreyer A, Matthias V, Weinberg I, Ebinghaus R (2010) Wet deposition of poly-and perfluorinated compounds in northern Germany. Environ Pollut 158:1221–1227CrossRefGoogle Scholar
  33. Druart C, Millet M, Scheifler R, Delhomme O, Raeppel C, de Vaufleury A (2011) Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard. Sci Total Environ 409:4280–4288CrossRefGoogle Scholar
  34. Dummee V, Kruatrachue M, Trinachartvanit W, Tanhan P, Pokethitiyook P, Damrongphol P (2012) Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand. Ecotoxicol Environ Saf 86:204–212CrossRefGoogle Scholar
  35. Elemental T (2001) AAS, GFAAS, ICP or ICP-MS? Which technique should I use? An elementary overview of elemental analysis. MA: Thermo ElementalGoogle Scholar
  36. Elichegaray C, Bouallala S, Maitre A, Ba M (2010) État et évolution de la pollution atmosphérique. Revue Française d'Allergologie 50:381–393CrossRefGoogle Scholar
  37. Emilia R, Debora B, Stefania A, Nicola B, Roberto B (2016) Papillifera papillaris (O.F. Müller), a small snail living on stones and monuments, as indicator of metal deposition and bioavailability in urban environments. Ecol Indic 69:360–367CrossRefGoogle Scholar
  38. EN16414:2014 (2014) Ambient air. Biomonitoring with mosses. Accumulation of atmospheric contaminants in mosses collected in situ: from the Collection to the Preparation of Samples. Institution BS (Hrsg.), 978 0 580 77794 3Google Scholar
  39. Eriksson G, Jensen S, Kylin H, Strachan W (1989) The pine needle as a monitor of atmospheric pollution. Nature 341:42–44Google Scholar
  40. Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015) A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Sci Total Environ 517:132–150CrossRefGoogle Scholar
  41. Fernández-Varela R, Ratola N, Alves A, Amigo JM (2015) Relationship between levels of polycyclic aromatic hydrocarbons in pine needles and socio-geographic parameters. J Environ Manag 156:52–61CrossRefGoogle Scholar
  42. Fu J, Wang Y, Zhang A, Zhang Q, Zhao Z, Wang T, Jiang G (2011) Spatial distribution of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs) in an e-waste dismantling region in Southeast China: use of apple snail (Ampullariidae) as a bioindicator. Chemosphere 82:648–655CrossRefGoogle Scholar
  43. Füreder L, Reynolds J (2003) Is Austropotamobius pallipes a good bioindicator? Bull Fr Pêche Piscic:157–163Google Scholar
  44. García-Valcárcel AI, Molero E, Tadeo JL, Hernando MD (2016) Determination of selected environmental contaminants in foraging honeybees. Talanta 148:1–6CrossRefGoogle Scholar
  45. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371CrossRefGoogle Scholar
  46. Gerdol R, Marchesini R, Iacumin P, Brancaleoni L (2014) Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 108:388–395CrossRefGoogle Scholar
  47. Gérez N, Pérez-Parada A, Cesio MV, Heinzen H (2017) Occurrence of pesticide residues in candies containing bee products. Food Control 72:293–299CrossRefGoogle Scholar
  48. Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Greatti M, Giorio C, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815CrossRefGoogle Scholar
  49. Gomot A (1997) Effects of heavy metals on snail development. Use of snails as bio-indicators of heavy metal pollution for the preservation of human health. Bull Acad Natl Med 181:59–74 discussion 74-5Google Scholar
  50. González Paramás AM, Gómez Bárez JA, Garcia-Villanova RJ, Rivas Palá T, Ardanuy Albajar R, Sánchez Sánchez J (2000) Geographical discrimination of honeys by using mineral composition and common chemical quality parameters. J Sci Food Agric 80:157–165CrossRefGoogle Scholar
  51. González A, Pokrovsky O (2014) Metal adsorption on mosses: toward a universal adsorption model. J Colloid Interface Sci 415:169–178CrossRefGoogle Scholar
  52. Goodman GT, Roberts T (1971) Plants and soils as indicators of metals in the air. Nature 231:287–292CrossRefGoogle Scholar
  53. Górecki T, Namieśnik J (2002) Passive sampling. TrAC Trends Anal Chem 21:276–291CrossRefGoogle Scholar
  54. Greatti M, Sabatini AG, Barbattini R, Rossi S, Stravisi A (2003) Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results. Bulletin of Insectology 56:69–72Google Scholar
  55. Grimalt JO, Van Drooge BL (2006) Polychlorinated biphenyls in mountain pine (Pinus uncinata) needles from Central Pyrenean high mountains (Catalonia, Spain). Ecotoxicol Environ Saf 63:61–67CrossRefGoogle Scholar
  56. Harmens H, Norris D, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156CrossRefGoogle Scholar
  57. Harmens H, Ilyin I, Mills G, Aboal J, Alber R, Blum O, Coşkun M, De Temmerman L, Fernández J, Figueira R (2012) Country-specific correlations across Europe between modelled atmospheric cadmium and lead deposition and concentrations in mosses. Environ Pollut 166:1–9CrossRefGoogle Scholar
  58. Harmens H, Foan L, Simon V, Mills G (2013) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254CrossRefGoogle Scholar
  59. Harmens H, Schnyder E, Thöni L, Cooper DM, Mills G, Leblond S, Mohr K, Poikolainen J, Santamaria J, Skudnik M (2014) Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environ Pollut 194:50–59CrossRefGoogle Scholar
  60. Harner T, Bartkow M, Holoubek I, Klanova J, Wania F, Gioia R, Moeckel C, Sweetman AJ, Jones KC (2006) Passive air sampling for persistent organic pollutants: introductory remarks to the special issue. Environ Pollut 144:361–364CrossRefGoogle Scholar
  61. Herrera López S, Lozano A, Sosa A, Hernando MD, Fernández-Alba AR (2016) Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163:44–53CrossRefGoogle Scholar
  62. Holt E, Kočan A, Klánová J, Assefa A, Wiberg K (2016) Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and metals in scots pine (Pinus sylvestris) needles from Eastern and Northern Europe: spatiotemporal patterns, and potential sources. Chemosphere 156:30–36CrossRefGoogle Scholar
  63. Hu J, Zhang H, Chen S, Ying Q, Wiedinmyer C, Vandenberghe F, Kleeman MJ (2014) Identifying PM2. 5 and PM0. 1 sources for epidemiological studies in California. Environ Sci Technol 48:4980–4990CrossRefGoogle Scholar
  64. Ianistcki M, Dallarosa J, Sauer C, Teixeira C, Da Silva J (2009) Genotoxic effect of polycyclic aromatic hydrocarbons in the metropolitan area of Porto Alegre, Brazil, evaluated by Helix aspersa (Müller, 1774). Environ Pollut 157:2037–2042CrossRefGoogle Scholar
  65. Jevtić M, Dragić N, Bijelović S, Popović M (2014) Cardiovascular diseases and air pollution in Novi Sad, Serbia. Int J Occup Med Environ Health 27:153–164CrossRefGoogle Scholar
  66. Juan-Borrás M, Domenech E, Escriche I (2016) Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 67:127–134CrossRefGoogle Scholar
  67. Kasiotis KM, Anagnostopoulos C, Anastasiadou P, Machera K (2014) Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: reported death incidents in honeybees. Sci Total Environ 485:633–642CrossRefGoogle Scholar
  68. Kiljanek T, Niewiadowska A, Semeniuk S, Gaweł M, Borzęcka M, Posyniak A (2016) Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry—honeybee poisoning incidents. J Chromatogr A 1435:100–114CrossRefGoogle Scholar
  69. Klánová J, Kohoutek J, Hamplová L, Urbanová P, Holoubek I (2006) Passive air sampler as a tool for long-term air pollution monitoring: part 1. Performance assessment for seasonal and spatial variations. Environ Pollut 144:393–405CrossRefGoogle Scholar
  70. Klánová J, Čupr P, Baráková D, Šeda Z, Anděl P, Holoubek I (2009) Can pine needles indicate trends in the air pollution levels at remote sites? Environ Pollut 157:3248–3254CrossRefGoogle Scholar
  71. Koltsakidou A, Zacharis CK, Fytianos K (2015) A validated liquid chromatographic method for the determination of polycyclic aromatic hydrocarbons in honey after homogeneous liquid–liquid extraction using hydrophilic acetonitrile and sodium chloride as mass separating agent. J Chromatogr A 1377:46–54CrossRefGoogle Scholar
  72. Kot A, Zabiegała B, Namieśnik J (2000) Passive sampling for long-term monitoring of organic pollutants in water. TrAC Trends Anal Chem 19:446–459CrossRefGoogle Scholar
  73. Kujawski MW, Namieśnik J (2011) Levels of 13 multi-class pesticide residues in Polish honeys determined by LC-ESI-MS/MS. Food Control 22:914–919CrossRefGoogle Scholar
  74. Kujawski MW, Pinteaux E, Namieśnik J (2012) Application of dispersive liquid–liquid microextraction for the determination of selected organochlorine pesticides in honey by gas chromatography–mass spectrometry. Eur Food Res Technol 234:223–230CrossRefGoogle Scholar
  75. Kujawski MW, Bargańska Ż, Marciniak K, Miedzianowska E, Kujawski JK, Ślebioda M, Namieśnik J (2014) Determining pesticide contamination in honey by LC-ESI-MS/MS–comparison of pesticide recoveries of two liquid–liquid extraction based approaches. LWT Food Sci Technol 56:517–523CrossRefGoogle Scholar
  76. Lambert O, Piroux M, Puyo S, Thorin C, Larhantec M, Delbac F, Pouliquen H (2012a) Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut 170:254–259CrossRefGoogle Scholar
  77. Lambert O, Veyrand B, Durand S, Marchand P, Bizec BL, Piroux M, Puyo S, Thorin C, Delbac F, Pouliquen H (2012b) Polycyclic aromatic hydrocarbons: bees, honey and pollen as sentinels for environmental chemical contaminants. Chemosphere 86:98–104CrossRefGoogle Scholar
  78. Laskowski R, Hopkin SP (1996) Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): implications for predators. Environ Pollut 91:289–297CrossRefGoogle Scholar
  79. Lavin KS, Hageman KJ (2012) Selective pressurised liquid extraction of halogenated pesticides and polychlorinated biphenyls from pine needles. J Chromatogr A 1258:30–36CrossRefGoogle Scholar
  80. Lazić L, Urošević MA, Mijić Z, Vuković G, Ilić L (2016) Traffic contribution to air pollution in urban street canyons: integrated application of the OSPM, moss biomonitoring and spectral analysis. Atmos Environ 141:347–360CrossRefGoogle Scholar
  81. Lequy E, Sauvage S, Laffray X, Gombert-Courvoisier S, Pascaud A, Galsomiès L, Leblond S (2016) Assessment of the uncertainty of trace metal and nitrogen concentrations in mosses due to sampling, sample preparation and chemical analysis based on the French contribution to ICP-vegetation. Ecol Indic 71:20–31CrossRefGoogle Scholar
  82. Li L, Zheng B, Liu L (2010) Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ Sci 2:1510–1524CrossRefGoogle Scholar
  83. Li J, Lusher AL, Rotchell JM, Deudero S, Turra A, Bråte ILN, Sun C, Shahadat Hossain M, Li Q, Kolandhasamy P, Shi H (2019) Using mussel as a global bioindicator of coastal microplastic pollution. Environ Pollut 244:522–533CrossRefGoogle Scholar
  84. Malhat FM, Haggag MN, Loutfy NM, Osman MA, Ahmed MT (2015) Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. Chemosphere 120:457–461CrossRefGoogle Scholar
  85. Maphangwa KW, Musil C, Raitt L, Zedda L (2012) Differential interception and evaporation of fog, dew and water vapour and elemental accumulation by lichens explain their relative abundance in a coastal desert. J Arid Environ 82:71–80CrossRefGoogle Scholar
  86. Marć M, Tobiszewski M, Zabiegała B, Mdl G, Namieśnik J (2015) Current air quality analytics and monitoring: a review. Anal Chim Acta 853:116–126CrossRefGoogle Scholar
  87. Marigómez I, Zorita I, Izagirre U, Ortiz-Zarragoitia M, Navarro P, Etxebarria N, Orbea A, Soto M, Cajaraville MP (2013) Combined use of native and caged mussels to assess biological effects of pollution through the integrative biomarker approach. Aquat Toxicol 136-137:32–48CrossRefGoogle Scholar
  88. Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21:77–82CrossRefGoogle Scholar
  89. Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. J Radioanal Nucl Chem 240:425–429CrossRefGoogle Scholar
  90. Masri S, Kang C-M, Koutrakis P (2015) Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. J Air Waste Manage Assoc 65:287–297CrossRefGoogle Scholar
  91. Matin G, Kargar N, Buyukisik HB (2016) Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecol Eng 90:331–335CrossRefGoogle Scholar
  92. McDonald K (2012) 11 - Air pollution in the urban atmosphere: sources and consequences A2 - Zeman, Frank, Metropolitan Sustainability. Woodhead Publishing, Cambridge, pp 231–259Google Scholar
  93. Melymuk L, Bohlin-Nizzetto P, Prokeš R, Kukučka P, Klánová J (2016) Sampling artifacts in active air sampling of semivolatile organic contaminants: comparing theoretical and measured artifacts and evaluating implications for monitoring networks. Environ Pollut 217:97–106CrossRefGoogle Scholar
  94. Milun V, Grgas D, Dragičević TL (2016) Assessment of PCB and chlorinated pesticide accumulation in mussels at Kaštela Bay (Eastern Adriatic). Sci Total Environ 562:115–127CrossRefGoogle Scholar
  95. Mleiki A, Irizar A, Zaldibar B, El Menif NT, Marigómez I (2016) Bioaccumulation and tissue distribution of Pb and Cd and growth effects in the green garden snail, Cantareus apertus (born, 1778), after dietary exposure to the metals alone and in combination. Sci Total Environ 547:148–156CrossRefGoogle Scholar
  96. Mohr S, García-Bermejo Á, Herrero L, Gómara B, Costabeber IH, González MJ (2014) Levels of brominated flame retardants (BFRs) in honey samples from different geographic regions. Sci Total Environ 472:741–745CrossRefGoogle Scholar
  97. Moniruzzaman M, Chowdhury MAZ, Rahman MA, Sulaiman SA, Gan SH (2014) Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to Manuka honey. Biomed Res Int 2014:359890Google Scholar
  98. Moreira TCL, de Oliveira RC, Amato LFL, Kang C-M, Saldiva PHN, Saiki M (2016) Intra-urban biomonitoring: source apportionment using tree barks to identify air pollution sources. Environ Int 91:271–275CrossRefGoogle Scholar
  99. Morville S, Scheyer A, Mirabel P, Millet M (2004) Sampling and analysis of polycyclic aromatic hydrocarbons in urban and rural atmospheres: spatial and geographical variations of concentrations. Polycycl Aromat Compd 24:617–634CrossRefGoogle Scholar
  100. Nickel S, Schröder W (2017) Reorganisation of a long-term monitoring network using moss as biomonitor for atmospheric deposition in Germany. Ecol Indic 76:194–206CrossRefGoogle Scholar
  101. Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens, monitoring with lichens—monitoring lichens. Springer, Berlin, pp 1–4CrossRefGoogle Scholar
  102. Noth EM, Katharine Hammond S, Biging GS, Tager IB (2013) Mapping and modeling airborne urban phenanthrene distribution using vegetation biomonitoring. Atmos Environ 77:518–524CrossRefGoogle Scholar
  103. Odabasi M, Dumanoglu Y, Ozgunerge Falay E, Tuna G, Altiok H, Kara M, Bayram A, Tolunay D, Elbir T (2016) Investigation of spatial distributions and sources of persistent organic pollutants (POPs) in a heavily polluted industrial region using tree components. Chemosphere 160:114–125CrossRefGoogle Scholar
  104. Palmes E, Gunnison AF (1973) Personal monitoring device for gaseous contaminants. Am Ind Hyg Assoc J 34:78–81CrossRefGoogle Scholar
  105. Panseri S, Catalano A, Giorgi A, Arioli F, Procopio A, Britti D, Chiesa L (2014) Occurrence of pesticide residues in Italian honey from different areas in relation to its potential contamination sources. Food Control 38:150–156CrossRefGoogle Scholar
  106. Paradis D, Bérail G, Bonmatin J-M, Belzunces LP (2014) Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal Bioanal Chem 406:621–633CrossRefGoogle Scholar
  107. Pauget B, Gimbert F, Coeurdassier M, Crini N, Pérès G, Faure O, Douay F, Richard A, Grand C, de Vaufleury A (2013) Assessing the in situ bioavailability of trace elements to snails using accumulation kinetics. Ecol Indic 34:126–135CrossRefGoogle Scholar
  108. Pietrzykowski M, Socha J, van Doorn NS (2014) Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci Total Environ 470–471:501–510CrossRefGoogle Scholar
  109. POPRC.12 (2016) Twelfth meeting of the Persistent Organic Pollutants Review CommitteeGoogle Scholar
  110. Porrini C, Sabatini AG, Girotti S, Ghini S, Medrzycki P, Grillenzoni F, Bortolotti L, Gattavecchia E, Celli G (2003) Honey bees and bee products as monitors of the environmental contamination. Apiacta 38:63–70Google Scholar
  111. Proum S, Santos JH, Lim LH, Marshall DJ (2016) Metal accumulation in the tissues andshells of Indothais gradata snails inhabiting soft and hard substrata in an acidified tropical estuary (Brunei, South East Asia). Reg Stud Mar Sci 8:487–497.
  112. Raeymaekers B (2006) A prospective biomonitoring campaign with honey bees in a district of Upper-Bavaria (Germany). Environ Monit Assess 116:233–243CrossRefGoogle Scholar
  113. Ratola N, Lacorte S, Alves A, Barceló D (2006) Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography–mass spectrometry: comparison of different extraction and clean-up procedures. J Chromatogr A 1114:198–204CrossRefGoogle Scholar
  114. Ratola N, Alves A, Santos L, Lacorte S (2011a) Pine needles as passive bio-samplers to determine polybrominated diphenyl ethers. Chemosphere 85:247–252CrossRefGoogle Scholar
  115. Ratola N, Amigo JM, Oliveira MS, Araújo R, Silva JA, Alves A (2011b) Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons. Environ Exp Bot 72:339–347CrossRefGoogle Scholar
  116. Ratola N, Homem V, Silva JA, Araújo R, Amigo JM, Santos L, Alves A (2014) Biomonitoring of pesticides by pine needles—chemical scoring, risk of exposure, levels and trends. Sci Total Environ 476:114–124CrossRefGoogle Scholar
  117. Reguera P, Couceiro L, Fernández N (2018) A review of the empirical literature on the use of limpets Patella spp. (Mollusca: Gastropoda) as bioindicators of environmental quality. Ecotoxicol Environ Saf 148:593–600CrossRefGoogle Scholar
  118. Reiner EJ, Jobst KJ, Megson D, Dorman FL, Focant J-F (2013) Environmental forensics analytical methodology of POPs, environmental forensics for persistent organic Pollutants. Elsevier, New YorkGoogle Scholar
  119. Rodriguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42CrossRefGoogle Scholar
  120. Rola K, Osyczka P (2019) Temporal changes in accumulation of trace metals in vegetative and generative parts of Xanthoria parietina lichen thalli and their implications for biomonitoring studies. Ecol Indic 96:293–302CrossRefGoogle Scholar
  121. Romanić SH, Krauthacker B (2006) Distribution of persistent organochlorine compounds in one-year and two-year-old pine needles. Bull Environ Contam Toxicol 77:143–148CrossRefGoogle Scholar
  122. Romanič S, Krauthacker B (2007) Are pine needles bioindicators of air pollution? Comparison of organochlorine compound levels in pine needles and ambient air. Arch Ind Hyg Toxicol 58:195–199Google Scholar
  123. Ru Q-M, Feng Q, He J-Z (2013) Risk assessment of heavy metals in honey consumed in Zhejiang province, southeastern China. Food Chem Toxicol 53:256–262CrossRefGoogle Scholar
  124. Ruhling A, Tyler G (1968) An ecological approach to lead problem. Bot Notiser 121:21Google Scholar
  125. Rühling Å, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br et Sch Oikos, pp 92–97Google Scholar
  126. Rutkowska M, Płotka-Wasylka J, Lubinska-Szczygeł M, Różańska A, Możejko-Ciesielska J, Namieśnik J (2018) Birds' feathers – suitable samples for determination of environmental pollutants. TrAC Trends Anal Chem 109:97–115CrossRefGoogle Scholar
  127. Salo H, Bućko MS, Vaahtovuo E, Limo J, Mäkinen J, Pesonen LJ (2012) Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem Explor 115:69–81CrossRefGoogle Scholar
  128. Sanusi A, Millet M, Mirabel P, Wortham H (1999) Gas–particle partitioning of pesticides in atmospheric samples. Atmos Environ 33:4941–4951CrossRefGoogle Scholar
  129. Sanusi A, Millet M, Mirabel P, Wortham H (2000) Comparison of atmospheric pesticide concentrations measured at three sampling sites: local, regional and long-range transport. Sci Total Environ 263:263–277CrossRefGoogle Scholar
  130. Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159:3560–3570CrossRefGoogle Scholar
  131. Schummer C, Mothiron E, Appenzeller BMR, Rizet A-L, Wennig R, Millet M (2010) Temporal variations of concentrations of currently used pesticides in the atmosphere of Strasbourg, France. Environ Pollut 158:576–584CrossRefGoogle Scholar
  132. Seethapathy S, Gorecki T, Li X (2008) Passive sampling in environmental analysis. J Chromatogr A 1184:234–253CrossRefGoogle Scholar
  133. Shamsipur M, Yazdanfar N, Ghambarian M (2016) Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chem 204:289–297CrossRefGoogle Scholar
  134. Shendy AH, Al-Ghobashy MA, Mohammed MN, Gad Alla SA, Lotfy HM (2016) Simultaneous determination of 200 pesticide residues in honey using gas chromatography–tandem mass spectrometry in conjunction with streamlined quantification approach. J Chromatogr A 1427:142–160CrossRefGoogle Scholar
  135. Silva JA, Ratola N, Ramos S, Homem V, Santos L, Alves A (2015) An analytical multi-residue approach for the determination of semi-volatile organic pollutants in pine needles. Anal Chim Acta 858:24–31CrossRefGoogle Scholar
  136. Silvina N, Florencia J, Nicolás P, Cecilia P, Lucía P, Abbate S, Leonidas C-L, Sebastián D, Yamandú M, Verónica C (2017) Neonicotinoids transference from the field to the hive by honey bees: towards a pesticide residues biomonitor. Sci Total Environ 581:25–31Google Scholar
  137. Sinkkonen S, Welling L, Vattulainen A, Lahti L, Lahtiperä M, Paasivirta J (1996) Short chain aliphatic halocarbons and polychlorinated biphenyls in pine needles: effects of metal scrap plant emissions. Chemosphere 32:1971–1982CrossRefGoogle Scholar
  138. Souza Tette PA, Rocha Guidi L, de Abreu Glória MB, Fernandes C (2016) Pesticides in honey: a review on chromatographic analytical methods. Talanta 149:124–141CrossRefGoogle Scholar
  139. Ştefănuţ S, Manole A, Ion MC, Constantin M, Banciu C, Onete M, Manu M, Vicol I, Moldoveanu MM, Maican S, Cobzaru I, Nicoară RG, Florescu LI, Mogîldea ED, Purice DM, Nicolae CD, Catană RD, Teodosiu G, Dumitrache CA, Maria GM, Vâtcă C, Oanţă M, Öllerer K (2018) Developing a novel warning-informative system as a tool for environmental decision-making based on biomonitoring. Ecol Indic 89:480–487CrossRefGoogle Scholar
  140. Sun F, Wen D, Kuang Y, Li J, Li J, Zuo W (2010) Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine(Pinus massoniana L.) growing nearby different industrial sources. J Environ Sci (China) 22:1006–1013CrossRefGoogle Scholar
  141. Surma M, Wiczkowski W, Cieślik E, Zieliński H (2015) Method development for the determination of PFOA and PFOS in honey based on the dispersive solid phase extraction (d-SPE) with micro-UHPLC–MS/MS system. Microchem J 121:150–156CrossRefGoogle Scholar
  142. Sverdrup LE, De Vaufleury A, Hartnik T, Hagen SB, Loibner AP, Jensen J (2006) Effects and uptake of polycyclic aromatic compounds in snails (Helix aspersa). Environ Toxicol Chem 25:1941–1945CrossRefGoogle Scholar
  143. Tausz M, Trummer W, Goessler W, Wonisch A, Grill D, Naumann S, Jiménez MS, Morales D (2005) Accumulating pollutants in conifer needles on an Atlantic island – a case study with Pinus canariensis on Tenerife, Canary Islands. Environ Pollut 136:397–407CrossRefGoogle Scholar
  144. Temmerman LD, Bell N, Garrec JP, Klumpp A, Krause G, Tonneijck AE (2004) Biomonitoring of air pollutants with plants-considerations for the futureGoogle Scholar
  145. Tette PAS, da Silva Oliveira FA, Pereira ENC, Silva G, de Abreu Glória MB, Fernandes C (2016) Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS. Food Chem 211:130–139CrossRefGoogle Scholar
  146. Tuduri L, Harner T, Hung H (2006) Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates. Environ Pollut 144:377–383CrossRefGoogle Scholar
  147. Tuduri L, Millet M, Briand O, Montury M (2012) Passive air sampling of semi-volatile organic compounds. TrAC Trends Anal Chem 31:38–49CrossRefGoogle Scholar
  148. Van der Wat L, Forbes PB (2015) Lichens as biomonitors for organic air pollutants. TrAC Trends Anal Chem 64:165–172CrossRefGoogle Scholar
  149. van Drooge BL, Garriga G, Grimalt JO (2014) Polycyclic aromatic hydrocarbons in pine needles (Pinus halepensis) along a spatial gradient between a traffic intensive urban area (Barcelona) and a nearby natural park. Atmos Pollut Res 5:398–403CrossRefGoogle Scholar
  150. Vaufleury AG, Pihan F (2002) Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: metal bioavailability and bioaccumulation. Environ Toxicol Chem 21:820–827CrossRefGoogle Scholar
  151. Vázquez PP, Lozano A, Uclés S, Ramos MMG, Fernández-Alba AR (2015) A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1426:161–173CrossRefGoogle Scholar
  152. Viard B, Pihan F, Promeyrat S, Pihan J-C (2004) Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55:1349–1359CrossRefGoogle Scholar
  153. Wang A, Brauer M (2014) Review of next generation air monitors for air pollution. Environment Canada 10 Wellington, GatineauGoogle Scholar
  154. Wang J, Tuduri L, Mercury M, Millet M, Briand O, Montury M (2009) Sampling atmospheric pesticides with SPME: laboratory developments and field study. Environ Pollut 157:365–370CrossRefGoogle Scholar
  155. Wania F, Shen L, Lei YD, Teixeira C, Muir DC (2003) Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere. Environ Sci Technol 37:1352–1359CrossRefGoogle Scholar
  156. Wiest L, Buleté A, Giroud B, Fratta C, Amic S, Lambert O, Pouliquen H, Arnaudguilhem C (2011) Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J Chromatogr A 1218:5743–5756CrossRefGoogle Scholar
  157. Wöhrnschimmel H, Scheringer M, Bogdal C, Hung H, Salamova A, Venier M, Katsoyiannis A, Hites RA, Hungerbuhler K, Fiedler H (2016) Ten years after entry into force of the Stockholm Convention: what do air monitoring data tell about its effectiveness? Environ Pollut 217:149–158CrossRefGoogle Scholar
  158. Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21CrossRefGoogle Scholar
  159. Wolterbeek HT, Bode P (1995) State of the art of trace element determinations in plant matrices strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Sci Total Environ 176:33–43CrossRefGoogle Scholar
  160. Wu Q, Wang X, Zhou Q (2014) Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application. Environ Int 66:28–37CrossRefGoogle Scholar
  161. Xu D, Zhong W, Deng L, Chai Z, Mao X (2004) Regional distribution of organochlorinated pesticides in pine needles and its indication for socioeconomic development. Chemosphere 54:743–752CrossRefGoogle Scholar
  162. Yang C, Chen A, Chen R, Qi Y, Ye J, Li S, Li W, Liang Z, Liang Q, Guo D (2014) Acute effect of ambient air pollution on heart failure in Guangzhou, China. Int J Cardiol 177:436–441CrossRefGoogle Scholar
  163. Yeo H-G, Choi M, Chun M-Y, Sunwoo Y (2003) Gas/particle concentrations and partitioning of PCBs in the atmosphere of Korea. Atmos Environ 37:3561–3570CrossRefGoogle Scholar
  164. Zawisza-Raszka A, Dolezych B, Dolezych S, Migula P, Ligaszewski M (2010) Effects of nickel exposure and acute pesticide intoxication on acetylcholinesterase, catalase and glutathione S-transferase activity and glucose absorption in the digestive tract of Helix aspersa (Pulmonata, Helicidae). Int J Environ Pollut 40:380–390CrossRefGoogle Scholar
  165. Zhelyazkova I (2012) Honeybees–bioindicators for environmental quality. Bulg J Agric Sci 18:435–442Google Scholar
  166. Zhu X, Pfister G, Henkelmann B, Kotalik J, Bernhöft S, Fiedler S, Schramm K-W (2008) Simultaneous monitoring of profiles of polycyclic aromatic hydrocarbons in contaminated air with semipermeable membrane devices and spruce needles. Environ Pollut 156:461–466CrossRefGoogle Scholar
  167. Zhu N, Schramm K-W, Wang T, Henkelmann B, Fu J, Gao Y, Wang Y, Jiang G (2015) Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan Plateau, China. Sci Total Environ 518–519:328–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Josephine AL-Alam
    • 1
    • 2
  • Asma Chbani
    • 1
    • 3
  • Ziad Faljoun
    • 1
    • 4
  • Maurice Millet
    • 2
    Email author
  1. 1.Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and TechnologyLebanese UniversityTripoliLebanon
  2. 2.Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the AtmosphereUniversity of StrasbourgStrasbourgFrance
  3. 3.Faculty of Public Health IIILebanese UniversityTripoliLebanon
  4. 4.Faculty of Sciences IIILebanese UniversityTripoliLebanon

Personalised recommendations