Environmental Science and Pollution Research

, Volume 26, Issue 9, pp 9257–9280 | Cite as

ESSIMAGE: a tool for the assessment of the agroecological performance of agricultural production systems

  • Meriam TrabelsiEmail author
  • Elisabeth Mandart
  • Philippe Le Grusse
  • Jean-Paul Bord
Research Article


Over the last few years, intensive agriculture has often been denounced as a source of negative effects, particularly at the environmental and health level (overexploitation of natural resources, degradation of their quality, appearance and development of several diseases, etc.). Reducing the excessive use of agricultural inputs for the protection of the environment and the preservation of human and animal health is a social requirement nowadays. Investing in more sustainable agricultural models which make it possible to reduce, or even eliminate the risks, has become urgent. A possible solution may be to resort to agroecological systems. In order to be sustainable, these new systems must be performant at the agronomic, economic, social, and environmental levels. There is a multitude of tools for assessing the sustainability of agricultural systems. These tools are inappropriate for organic and agroecological systems, and do not make it possible to measure the agroecological transition performance of farms (Trabelsi et al. Environ Sci Pollut Res 23:139–156, 2016; Trabelsi 2017). This research project aims to design a decision support tool in order to help farms throughout the agroecological transition process, to assess the performance of this transition, and to put forward improvement scenarios. Contrary to other assessment methods, ESSIMAGE (Evaluation and Simulation of Agroecological Systems) is based on both pressure and impact indicators, and takes the specificities of agricultural production systems into account. It is a dynamic tool which not only makes it possible to assess farm performance at the present moment but also to consider the future by putting forward possible alternative improvement scenarios and by simulating their consequences at a later stage. ESSIMAGE is based on the interaction of two elements: agro-environmental, social, and economic indicators, and the GIS (Geographic Information System) software. This tool has been tested as part of a CASDAR “Post-MAET Gimone” ( ) project on the subject of “Collective mobilization for agroecology” by using farm data, most of the farms having been involved in an agro-environmental measure for the progressive reduction of phytosanitary treatments since 2008. It has made it possible to compare the agroecological performances of these farms with an optimal situation, as well as with each other. Considering the research objectives and the approaches discussed, this study is an original step in the development of agricultural management strategies in favor of agroecology.


Intensive agriculture Risks Assessment Performance Agroecological transition Decision support tool Indicators GIS 



We thank all the people we have met throughout this study: the farmers, the managers and agricultural technicians at the Qualisol cooperative group.8

Funding information

We are grateful to the Laboratoire d’Accueil Méditerranéen en Economie et Sciences Sociales (LAMES) of the Mediterranean Agronomic Institute of Montpellier (CIHEAM-IAMM) and to the CASDAR “Post-MAET Gimone” project that have financially supported this work.


  1. Agossou G, Gbehounou G, Zahm F, Agbossou EK (2017) Adaptation of the “Indicateurs de Durabilité des exploitations Agricoles (IDEA)” method for assessing sustainability of farms in the lower valley of Ouémé River in the Republic of Benin. SAGE journals 46:185–194. CrossRefGoogle Scholar
  2. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. CrossRefGoogle Scholar
  3. Altieri MA (1989) Agroecology: a new research and development paradigm for world agriculture. Agric Ecosyst Environ 27:37–46. CrossRefGoogle Scholar
  4. Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, BoulderGoogle Scholar
  5. Altieri MA (2009) Agroecology, small farms, and food sovereignty. Mon Rev 61:102–111CrossRefGoogle Scholar
  6. Altieri MA (2015) Developing and promoting agroecological innovations within country program strategies to address agroecosystem resilience in production landscapes: a guide. University of California, Berkeley, 2016, vol. 45.
  7. Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. CrossRefGoogle Scholar
  8. Audsley E, Alber S, Clift R, Cowell S, Crettaz P, Gaillard G et al (1997) Harmonisation of environmental life cycle assessment for agriculture. Final report concerted action AIR3-CT94-2028, Silsoe research institute, Silsoe, UKGoogle Scholar
  9. Ayadi H (2013) Outils de gestion de la pollution phytosanitaire diffuse au niveau d'un territoire : cas d'application zone humide Ramsar de la Merja Zerga au Maroc. Thèse (Dr en Géographie et Aménagement de l’Espace, spécialité Agronomie) : Université Montpellier 3, (France)Google Scholar
  10. Ayadi H, Le Grusse P, Fabre J, Mandart E, Bouaziz A, Bord JP (2012) Indicateurs et diagnostic de la pollution phytosanitaire diffuse d’origine agricole : construction d’un indicateur de risque de toxicité environnementale (IRTE). 42. Congrès du Groupe Français des Pesticides (GFP) : Nouveaux Enjeux et Stratégies Novatrices pour la Protection des Plantes Cultivées dans un Contexte de Développement Durable, 2012/05/30–2012/06/01, Poitiers (France)Google Scholar
  11. Baccar M, Bouaziz A, Dugue P, Gafsi M, Le Gal P (2016) Assessing family farm sustainability using the IDEA method in the Saïs plain (Morocco). In: 12th European IFSA symposium. Social and technological transformation of farming systems: diverging and converging pathways. Newport: IFSA, 148 pGoogle Scholar
  12. Bachev H (2005) Framework for assessing sustainability of farms. SSRN (Social Science Research Network) 11(1).
  13. Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110:11039–11043. CrossRefGoogle Scholar
  14. Binder CR, Feola G (2013) Normative, systemic and procedural aspects: a review of indicator-based sustainability assessments in agriculture. In Methods and Procedures for Building Sustainable Farming Systems. Springer Netherlands, 33–46 pGoogle Scholar
  15. Blair A, Ritz B, Wesseling C, Freeman LB (2015) Pesticides and human health. Occup Environ Med 72:81–82. CrossRefGoogle Scholar
  16. Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149. CrossRefGoogle Scholar
  17. Bockstaller C, Guichard L, Keichinger O, Girardin P, Galan MB, Gaillard G (2009) Comparison of methods to assess the sustainability of agricultural systems. A review. Agron Sustain Dev 29:223–235. CrossRefGoogle Scholar
  18. Briquel V, Vilain L, Bourdais JL, Girardin P, Mouchet C, Viaux P (2001) La méthode IDEA (indicateurs de durabilité des exploitations agricoles): une démarche pédagogique. Ingénieries-EAT 29-39. [online]:
  19. Celette F, Findeling A, Gary C (2009) Competition for nitrogen in an unfertilized intercropping system: the case of an association of grapevine and grass cover in a Mediterranean climate. Eur J Agron 30:41–51. CrossRefGoogle Scholar
  20. CIVAM (2008) Indicateurs de résultats en Agriculture Durable. [online]: Accessed 26 June 2013
  21. CIVAM (2010) Diagnostic de durabilité du Résau Agriculture Durable. Guide de l'utilisateur 2010. [online]: Accessed 10 June 2013
  22. Cohen E (1991) Gestion financière de l'entreprise et développement financier. Vanves, EDICEF. 302 p. (Universités francophones)Google Scholar
  23. Commission Européenne (1994) Directive du Conseil du 15 juillet 1991 concernant la mise en marché des produits phytopharmaceutiques. [online]: Accessed 12 March 2014
  24. Commission Européenne (2009) Règlement n° 1107/2009 du 21/10/09 concernant la mise sur le marché des produits phytopharmaceutiques et abrogeant les directives 79/117/CEE et 91/414/CEE du Conseil. [online]: Accessed 12 March 2014
  25. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the Central Valley of California. Am J Epidemiol 169:919–926. CrossRefGoogle Scholar
  26. Crissman CC, Antle JM, Capalbo S (eds) (1998) Economic, environmental, and health tradeoffs in agriculture: pesticides and the sustainability of Andean potato production. Kluwer Academic Publisher, Dordrecht, 281 pGoogle Scholar
  27. Dahlberg KA (1991) Sustainable agriculture: fad or harbinger? Bioscience 41:337–340. CrossRefGoogle Scholar
  28. De Olde EM, Oudshoorn FW, Sorensen CA, Bokkers EA, De Boer IJ (2016) Assessing sustainability at farm-level: lessons learned from a comparison of tools in practice. Ecol Indic 66:391–404. CrossRefGoogle Scholar
  29. Eaton H (1993) Farmsuccession, viability and retirement: ten case studies from Canterbury. MAF policy technical paper 93/16. Wellington (nouvelle-Zélande), Ministry of Agriculture and fisheries. Vol 58Google Scholar
  30. Ferguson BG, Morales H (2010) Latin American agroecologists build a powerful scientific and social movement. J Sustain Agric 34:339–341. CrossRefGoogle Scholar
  31. Gafsi M, Favreau JL (2010) Appropriate method to assess the sustainability of organic farming systems. In: Darnhofer I., Grötzer M. (eds). Building sustainable rural futures. The added value of systems approaches in times of change and uncertainty. Vienne, University of Natural Resources and Applied Life Sciences. p. 912-921. 9. European IFSA symposium, 2010/07/04-07, Vienne (Autriche)Google Scholar
  32. Girardin P, Bockstaller C, Van der Werf H (2000) Assessment of potential impacts of agricultural practices on the environment: the AGRO*ECO method. Environ Impact Assess Rev 20:227–239. CrossRefGoogle Scholar
  33. Gliessman SR (1998) Agroecology: ecological process in sustainable agriculture. Ann Arbor Press, Michigan, p 357 ISBN 1-57504-043-3Google Scholar
  34. Gonzales S (2013) Systèmes de culture innovants & performants. Symposium « Les agroéquipements et le développement durable », 2013/09/26, Dijon (France)Google Scholar
  35. Grenz J, Thalmann C, Stämpfli A, Studer C, Häni F (2009) RISE–a method for assessing the sustainability of agricultural production at farm level. Rural Development News 1:5–9Google Scholar
  36. Hansen JW (1996) Is agricultural sustainability a useful concept? Agric Syst 50:117–143. CrossRefGoogle Scholar
  37. IAASTD (International Assessment of Agricultural Knowledge, Science and Technology for Development) (2009) Agriculture at a crossroads. In: MacIntyre BD, Herren HR, Wakhungu J, Watson RT (eds) Global Report. International Assessment of Agricultural Knowledge, Science and Technology for Development. Island Press, Washington, DC ISBN 978–1–59726–538Google Scholar
  38. Le Grusse P, Mandart E, Bouaziz A, Le Bars M, Bord JP, Fabre J (2014) Gestion de la Toxicité en zone Ramsar (TRam). 68 p. rapport final, programme Pesticides (APR 2009)Google Scholar
  39. Lepage F, Perrier JP, Parent D (2008) Les déterminants financiers et organisationnels de la viabilité économique des entreprises agricoles familiales après leur transfert. 2ème Journée de recherche en sciences sociales INRA-SFER-CIRAD. 11–12 décembre 2008- LILLE, FranceGoogle Scholar
  40. Mghirbi O, Ellefi K, Le Grusse P, Mandart E, Fabre J, Ayadi H, Bord JP (2015) Assessing plant protection practices using pressure indicator and toxicity risk indicators: analysis of the relationship between these indicators for improved risk management, application in viticulture. Environ Sci Pollut Res 22:8058–8074. CrossRefGoogle Scholar
  41. Mghirbi O, Le Grusse P, Fabre J, Mandart E, Bord JP (2017) OptiPhy, a technical-economic optimisation model for improving the management of plant protection practices in agriculture: a decision-support tool for controlling the toxicity risks related to pesticides. Environ Sci Pollut Res 24:6951–6972. CrossRefGoogle Scholar
  42. Ministère de l’Agriculture et de l’Alimentation (2017) Le diagnostic agro-écologique de votre exploitation en ligne. [online]: Accessed 08 Sept 2017
  43. Obert R, Mairesse MP (2014) DSCG 4 - Comptabilité et audit : manuel et applications. 5 ed. Paris, DUNOD. 688 p. (Expert Sup)Google Scholar
  44. OCDE (2001) Mesurer la productivité. Manuel de l’OCDE. Mesurer la croissance de la productivité par secteur et pour l’ensemble de l’économie. Paris, OCDE. 162 pGoogle Scholar
  45. OECD (1999) Environmental indicators for agriculture. Issues and design “the York workshop”. Paris, OECD. 213 p. (vol. 2)Google Scholar
  46. OECD (2001) Environmental indicators for agriculture. Methods and results. Paris, OECD. 409 p. (vol. 3)Google Scholar
  47. Pacini C, Wossink A, Giesen G, Vazzana C, Huirne R (2003) Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis. Agric Ecosyst Environ 95:273–288. CrossRefGoogle Scholar
  48. Pacini C, Giesen G, Wossink A, Omodei-Zorini L, Huirne R (2004) The EU’s agenda 2000 reform and the sustainability of organic farming in Tuscany: ecological-economic modelling at field and farm level. Agric Syst 80:171–197. CrossRefGoogle Scholar
  49. Park J, Seaton RAF (1996) Integrative research and sustainable agriculture. Agric Syst 50:81–100. CrossRefGoogle Scholar
  50. Potier D (2014) Pesticides et agro-écologie, les champs du possible. Paris, Ministère de l'agriculture, de l'agroalimentaire et de la forêt 251 pGoogle Scholar
  51. Raveau A (2011) Critère d’autonomie et comportement des exploitations agricoles face au choc économique de 2007. Paris, Commissariat général au développement durable. 78 p. (Études et documents, n. 46)Google Scholar
  52. Reinjtes C, Haverkort B, Waters-Bayer A (1992) Farming for the future: an introduction to low-external-input and sustainable agriculture. MacMillan, London, 250 pGoogle Scholar
  53. Rossing WAH, Zander P, Josien E, Groot JCJ, Meyer BC, Knierim A (2007) Integrative modelling approaches for analysis of impact of multifunctional agriculture: a review for France, Germany and the Netherlands. Agric Ecosyst Environ 120:41–57. CrossRefGoogle Scholar
  54. Samuel O, Dion S, St-Laurent L, April MH (2012) Indicateur de risque de pesticides du Québec-IRPeQ. 2 ed. Québec, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation. 36 p. (Santé et environnement).[online]:
  55. SOLAGRO (2006) ECODIAG DIALECTE, manuel d'évaluation des impacts de l'exploitation sur son environnement. 44 p.[online]:
  56. Spikkerud E, Haraldsen T, Abdellaue A, Holmen MT (2004) Pesticide risk indicators for human health and the environment. Norwegian Food Safety Authority, National Centre of Plants and Vegetable Foods, OsloGoogle Scholar
  57. Taylor DC, Zainal Abidin M, Mad Nasir S, Mohd Ghazali M, Chiew EFC (1993) Creating a farmer sustainability index: a Malaysian case study. Am J Altern Agric 8:175–184. CrossRefGoogle Scholar
  58. Thompson HM (2010) Risk assessment for honey bees and pesticides - recent developments and ‘new issues’. Pest Manag Sci 66:1157–1162. CrossRefGoogle Scholar
  59. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. CrossRefGoogle Scholar
  60. Trabelsi M (2017) Comment mesurer la performance agroécologique d’une exploitation agricole pour l’accompagner dans son processus de transition? Thèse (Dr en Géographie et Aménagement de l’Espace) : Université Montpellier 3, (France).
  61. Trabelsi M, Mandart E, Le Grusse P, Bord JP (2016) How to measure the agroecological performance of farming in order to assist with the transition process. Environ Sci Pollut Res 23:139–156. CrossRefGoogle Scholar
  62. UNCED (1992) Agenda 21: programme of action for sustainable development, Rio declaration on environment and development, statement of forest principles: the final text of agreements negotiated by governments at the United Nations conference on environment and development (UNCED). New York, United Nations Department of public information. 294 p. Agenda 21. United Nations conference on Environment & Development, 1992/06/3-14, Rio de Janerio (Brésil)Google Scholar
  63. Van der Werf HM, Petit J (2002) Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-based methods. Agric Ecosyst Environ 93:131–145. CrossRefGoogle Scholar
  64. Vandermeer J, Van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22. CrossRefGoogle Scholar
  65. Verbruggen H, Kuik O (1991) Indicators of sustainable development: an overview. In: Kuik O, Verbruggen H (eds) Search of indicators of sustainable development. Environment & Management, vol 1. Springer, Dordrecht. CrossRefGoogle Scholar
  66. Vilain L (2000) La méthode IDEA : Indicateurs de durabilité des exploitations agricoles. Guide d’utilisation. Educagri éditions, Dijon, France, 100pGoogle Scholar
  67. Vilain L (2008) La méthode IDEA: Indicateurs de durabilité des exploitations agricoles. Guide d’utilisation. Educagri éditions, Dijon, France, 100pGoogle Scholar
  68. Walsh G, Jnderson J (2006) Gestion de la ferme familiale transmise de génération en génération. Ottawa, Conseil canadien de la gestion d'entreprise agricole 110pGoogle Scholar
  69. Wezel A, Soldat V (2009) A quantitative and qualitative historical analysis of the scientific discipline of agroecology. Int J Agric Sustain 7:3–18. CrossRefGoogle Scholar
  70. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement, and a practice. Agron Sustain Dev 29:503–515. CrossRefGoogle Scholar
  71. Woodhouse P, Howlett D, Rigby D (2000) A framework for research on sustainability indicators for agriculture and rural livelihoods. Working paper 2, ISBN: 1 902518624, 39 pGoogle Scholar
  72. Zahm F, Vernier F, Saudubray F, Peyrey C, Petit K, Bockstaller C, Girardin P, Hubert A, Da Costa JP (2007) Evaluation des modules «eaux de surface» de quatre indicateurs phytosanitaires (ADSCOR, EIQ, EPRIP, I-PHY) en bassin viticole. Premiers résultats issus d'un test appliqué aux pratiques phytosanitaires du bassin du Ruiné (Charente). 37. Congrès du Group Français des Pesticides (GFP), 2007/05/15-18, Bordeaux (France). In: Pesticides et Environnement. INRA, Villenave d’Ornon, pp 128–140Google Scholar
  73. Zahm F, Viaux P, Vilain L, Girardin P, Mouchet C (2008) Assessing farm sustainability with the IDEA method-from the concept of agriculture sustainability to case studies on farms. Sustain Dev 16:271–281. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CIHEAM-IAMM: Mediterranean Agronomic Institute of MontpellierMontpellier CEDEX 5France
  2. 2.University Paul-Valéry of Montpellier 3 (UPVM)Montpellier CEDEX 5France
  3. 3.UMR GRED, Gouvernance, Risque, Environnement, Développement (IRD/UM3)Montpellier CEDEX 5France

Personalised recommendations