Environmental Science and Pollution Research

, Volume 26, Issue 9, pp 8429–8443 | Cite as

Biodegradation of persistent environmental pollutants by Arthrobacter sp.

  • Xiaohong Guo
  • Chengyun Xie
  • Lijuan Wang
  • Qinfan Li
  • Yan WangEmail author
Review Article


Persistent environmental pollutants are a growing problem around the world. The effective control of the pollutants is of great significance for human health. Some microbes, especially Arthrobacter, can degrade pollutants into nontoxic substances in various ways. Here, we review the biological properties of Arthrobacter adapting to a variety of environmental stresses, including starvation, hypertonic and hypotonic condition, oxidative stress, heavy metal stress, and low-temperature stress. Furthermore, we categorized the Arthrobacter species that can degrade triazines, organophosphorus, alkaloids, benzene, and its derivatives. Metabolic pathways behind the various biodegradation processes are further discussed. This review will be a helpful reference for comprehensive utilization of Arthrobacter species to tackle environmental pollutants.


Arthrobacter Environmental stress Persistent environmental pollutants Biodegradation 



This study is supported by the National Natural Science Foundation of China (Grant No. 31201959), the Shaanxi Province Agricultural Science and Technology Innovation and Research Project (2016NY-116), and the Fundamental Research Funds for the Central Universities (Nos. 2452015036 and 2452015322).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article contains no studies with human participants or animals performed by any of the authors.


  1. Adhikari A, Bary A, Cogger C, James C, Unlu G, Killinger K (2016) Thermal and starvation stress response of Escherichia coli O157:H7 isolates selected from agricultural environments. J Food Prot 79(10):1673–1679CrossRefGoogle Scholar
  2. Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol Ecol 52(2):279–286CrossRefGoogle Scholar
  3. Arora PK, Jain RK (2011) Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp SJCon. Curr Microbiol 63(6):568–573CrossRefGoogle Scholar
  4. Arora PK, Mohanta TK, Srivastava A, Bae HH, Singh VP (2014) Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp SPG. Microb Cell Factories 13:164CrossRefGoogle Scholar
  5. Bae HS, Lee JM, Lee ST (1996) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145(1):125–129CrossRefGoogle Scholar
  6. Baitsch D, Sandu C, Brandsch R, Igloi GL (2001) Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J Bacteriol 183(18):262–267CrossRefGoogle Scholar
  7. Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002a) Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria. J Appl Microbiol 93(2):224–234CrossRefGoogle Scholar
  8. Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002b) Bioremediation of an industrial effluent containing monocrotophos. Curr Microbiol 45(5):346–349CrossRefGoogle Scholar
  9. Blaszak M, Pelech R, Graczyk P (2011) Screening of microorganisms for biodegradation of simazine pollution (obsolete pesticide Azotop 50 WP). Water Air Soil Poll 220(1–4):373–385CrossRefGoogle Scholar
  10. Bousquet A, Soler C, MacNab C, Le Fleche A, Heno P (2016) Arthrobacter albus infected implantable cardioverter-defibrillator. Medecine et maladies infectieuses 46(1):59–60CrossRefGoogle Scholar
  11. Boylen CW (1973) Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J Bacteriol 113(1):33–37Google Scholar
  12. Boylen CW, Ensign JC (1970) Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes. J Bacteriol 103(3):578–587Google Scholar
  13. Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69(5):493–498CrossRefGoogle Scholar
  14. Cai B, Han Y, Liu B, Ren Y, Jiang S (2003) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36(5):272–276CrossRefGoogle Scholar
  15. Casaite V, Poviloniene S, Meskiene R, Rutkiene R, Meskys R (2011) Studies of dimethylglycine oxidase isoenzymes in Arthrobacter globiformis cells. Curr Microbiol 62(4):1267–1273CrossRefGoogle Scholar
  16. Chatterjee S, Dutta TK (2008) Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: role of individual isolates in the assimilation pathway. Chemosphere 70(5):933–941CrossRefGoogle Scholar
  17. Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270(3):733–740CrossRefGoogle Scholar
  18. Chen YG, Tang SK, Zhang YQ, Li ZY, Yi LB, Wang YX, Li WJ, Cui XL (2009) Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie Van Leeuwenhoek 96(1):63–70CrossRefGoogle Scholar
  19. Chiribau CB, Sandu C, Fraaije M, Schiltz E, Brandsch R (2004) A novel gamma-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. Eur J Biochem 271(23–24):4677–4684CrossRefGoogle Scholar
  20. Cobzaru C, Brandsch R (2008) Steps in uncovering the key enzyme in the degradation of the pyridine ring in the Arthrobacter nicotinovorans. Genetic and Molecular Biology (Scientific Annals of Alexandru Ioan Cuza University) 9:1–9Google Scholar
  21. Conn HJ, Dimmick I (1947) Soil Bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 54(3):291–303Google Scholar
  22. Dai XZ, Jiang JD, Gu LF, Pan RQ, Li SP (2007) Study on the atrazine-degrading genes in Arthrobacter sp. AG1. Sheng Wu Gong Cheng Xue Bao 23(5):789–793CrossRefGoogle Scholar
  23. Du H, Wang M, Luo Z, Ni B, Wang F, Meng Y, Xu S, Huang X (2011) Coregulation of gene expression by sigma factors RpoE and RpoS in Salmonella enterica serovar Typhi during hyperosmotic stress. Curr Microbiol 62(5):1483–1489CrossRefGoogle Scholar
  24. Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183(12):3689–3703CrossRefGoogle Scholar
  25. El Sebai T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65(8):1249–1255CrossRefGoogle Scholar
  26. Fan JW, Wang XM, Teng W, Yang JP, Ran XQ, Gou X, Bai N, Lv MH, Xu HW, Li GM, Zhang WX, Zhao DY (2017) Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. J Colloid Interface Sci 487:354–359CrossRefGoogle Scholar
  27. Ferreira MI, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78(4):709–717CrossRefGoogle Scholar
  28. Furukawa K, Hayase N, Taira K, Tomizuka N (1989) Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J Bacteriol 171(10):5467–5472CrossRefGoogle Scholar
  29. Garcia MH, Morgante V, Perez MA, Biaggini PV, Noe PM, Vergara MG, Pfeiffer MS (2008) Novel s-triazine-degrading bacteria isolated from agricultural soils of central Chile for herbicide bioremediation. Electron J Biotechnol 11(5):5–6Google Scholar
  30. Getenga Z, Dorfler U, Iwobi A, Schmid M, Schroll R (2009) Atrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from a sugarcane-cultivated soil in Kenya. Chemosphere 77(4):534–539CrossRefGoogle Scholar
  31. Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol 63(5):1933–1938Google Scholar
  32. Guo Q, Wan R, Xie S (2014a) Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities. Environ Sci Pollut Res Int 21(1):337–343CrossRefGoogle Scholar
  33. Guo QW, Zhang JX, Wan R, Xie SG (2014b) Impacts of carbon sources on simazine biodegradation by Arthrobacter strain SD3-25 in liquid culture and soil microcosm. Int Biodeterior Biodegrad 89:1–6CrossRefGoogle Scholar
  34. Haines-Menges B, Whitaker WB, Boyd EF (2014) Alternative sigma factor RpoE is important for Vibrio parahaemolyticus cell envelope stress response and intestinal colonization. Infect Immun 82(9):3667–3677CrossRefGoogle Scholar
  35. Hanne LF, Kirk LL, Appel SM, Narayan AD, Bains KK (1993) Degradation and induction specificity in Actinomycetes that degrade P-nitrophenol. Appl Environ Microbiol 59(9):4378–4378Google Scholar
  36. Hassan I, Eastman AW, Weselowski B, Mohamedelhassan E, Yanful EK, Yuan ZC (2016) Complete genome sequence of Arthrobacter sp. strain LS16, isolated from agricultural soils with potential for applications in bioremediation and bioproducts. Genome Announc 4(1):e01586–e01515CrossRefGoogle Scholar
  37. Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9(1-14):199CrossRefGoogle Scholar
  38. Igloi GL, Brandsch R (2003) Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185(6):1976–1986CrossRefGoogle Scholar
  39. Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60(8):3030–3032Google Scholar
  40. Kallimanis A, LaButti KM, Lapidus A, Clum A, Lykidis A, Mavromatis K, Pagani I, Liolios K, Ivanova N, Goodwin L, Pitluck S, Chen A, Palaniappan K, Markowitz V, Bristow J, Velentzas AD, Perisynakis A, Ouzounis CC, Kyrpides NC, Koukkou AI, Drainas C (2011) Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3). Stand Genomic Sci 4(2):123–130CrossRefGoogle Scholar
  41. Kim M, Lee JH, Kim E, Choi H, Kim Y, Lee J (2016) Isolation of indole utilizing bacteria Arthrobacter sp. and Alcaligenes sp. from livestock waste. Indian J Microbiol 56(2):158–166CrossRefGoogle Scholar
  42. Kiran S, Swarnkar MK, Pal M, Thakur R, Tewari R, Singh AK, Gulati A (2015) Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using PacBio single-molecule real-time sequencing technology. Genome Announc 3(2):e00346–e00315CrossRefGoogle Scholar
  43. Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2015) Complete genome sequence of Arthrobacter sp. ERGS1:01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India. J Biotechnol 214:139–140CrossRefGoogle Scholar
  44. Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329CrossRefGoogle Scholar
  45. Labeda DP, Liu KC, Casida LE Jr (1976) Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy. Appl Environ Microbiol 31(4):551–561Google Scholar
  46. Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2004) Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. Biotechnol Bioeng 85(7):706–713CrossRefGoogle Scholar
  47. Li QY, Li Y, Zhu XK, Cai BL (2008) Isolation and characterization of atrazine-degrading Arthrobacter sp AD26 and use of this strain in bioremediation of contaminated soil. J Environ Sci 20(10):1226–1230CrossRefGoogle Scholar
  48. Li R, Liu Y, Zhang J, Chen K, Li S, Jiang J (2012) An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl Microbiol Biotechnol 94(6):1553–1564CrossRefGoogle Scholar
  49. Li CJ, Chen S, Sun C, Zhang L, Shi X, Wu SJ (2017) Cytotoxic monoterpenoid indole alkaloids from Alstonia yunnanensis Diels. Fitoterapia 117:79–83CrossRefGoogle Scholar
  50. Liu PP, Zhang JJ, Zhou NY (2010) Characterization and mutagenesis of a two-component monooxygenase involved in para-nitrophenol degradation by an Arthrobacter strain. Int Biodeterior Biodegrad 64(4):293–299CrossRefGoogle Scholar
  51. Ludwig W, Euzeby J, Whitmam WB (2012) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology. Springer, New York, pp 29–31Google Scholar
  52. Margesin R, Bergauer P, Gander S (2004) Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida. Extremophiles 8(3):201–207CrossRefGoogle Scholar
  53. Marks TS, Smith AR, Quirk AV (1984) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48(5):1020–1025Google Scholar
  54. Masaphy S, Zohar S, Jander-Shagug G (2014) Biodegradation of p-nitrophenol sorbed onto crystal violet-modified organoclay by Arthrobacter sp 4H beta. Appl Microbiol Biotechnol 98(3):1321–1327CrossRefGoogle Scholar
  55. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375CrossRefGoogle Scholar
  56. Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2(12):2094–2106CrossRefGoogle Scholar
  57. Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175(20):6459–6466CrossRefGoogle Scholar
  58. Nakatsu CH, Barabote R, Thompson S, Bruce D, Detter C, Brettin T, Han C, Beasley F, Chen W, Konopka A, Xie G (2013) Complete genome sequence of Arthrobacter sp. strain FB24. Stand Genomic Sci 9(1):106–116CrossRefGoogle Scholar
  59. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339CrossRefGoogle Scholar
  60. Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, Fetzner S (2012) Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics 13:534CrossRefGoogle Scholar
  61. Ohshiro K, Kakuta T, Nikaidou N, Watanabe T, Uchiyama T (1999) Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5. J Biosci Bioeng 87(4):531–534CrossRefGoogle Scholar
  62. Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504CrossRefGoogle Scholar
  63. Peloquin L, Greer CW (1993) Cloning and expression of the polychlorinated biphenyl-degradation gene cluster from Arthrobacter M5 and comparison to analogous genes from gram-negative bacteria. Gene 125(1):35–40CrossRefGoogle Scholar
  64. Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272(34):21388–21395CrossRefGoogle Scholar
  65. Radice F, Orlandi V, Massa V, Battini V, Bertoni G, Reineke W, Barbieri P (2007) Cloning of the Arthrobacter sp. FG1 dehalogenase genes and construction of hybrid pathways in Pseudomonas putida strains. Appl Microbiol Biotechnol 75(5):1111–1118CrossRefGoogle Scholar
  66. Ren H, Su Y, Zhang J, Pan H, Chen B, Wang Y (2016a) Recombinant protein, AlnA, combined with transgenic alfalfa remediates polychlorinated biphenyl-contaminated soils: efficiency and rhizosphere microbial community response. Biotechnol Lett 38(11):1893–1901CrossRefGoogle Scholar
  67. Ren L, Jia Y, Ruth N, Zhao B, Yan Y (2016b) Complete genome sequence of an aromatic compound degrader Arthrobacter sp. YC-RL1. J Biotechnol 219:34–35CrossRefGoogle Scholar
  68. Robinson JB, Salonius PO, Chase FE (1965) A note on the differential response of Arthrobacter spp. and pseudomonas spp. to drying in soil. Can J Microbiol 11(4):746–748CrossRefGoogle Scholar
  69. Rong L, Guo X, Chen K, Zhu J, Li S, Jiang J (2009) Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway. J Microbiol Biotechnol 19(11):1439–1446Google Scholar
  70. Russell DA, Hatfull GF (2016) Complete genome sequence of Arthrobacter sp. ATCC 21022, a host for bacteriophage discovery. Genome Announc 4(2):e00168-16CrossRefGoogle Scholar
  71. Rybkina DO, Plotnikova EG, Dorofeeva LV, Mironenko YL, Demakov VA (2003) A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenyls. Microbiology 72(6):672–677CrossRefGoogle Scholar
  72. Sagarkar S, Bhardwaj P, Storck V, Devers-Lamrani M, Martin-Laurent F, Kapley A (2016) s-triazine degrading bacterial isolate Arthrobacter sp. AK-YN10, a candidate for bioaugmentation of atrazine contaminated soil. Appl Microbiol Biotechnol 100(2):903–913CrossRefGoogle Scholar
  73. Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70(7):4402–4407CrossRefGoogle Scholar
  74. Scheublin TR, Deusch S, Moreno-Forero SK, Muller JA, van der Meer JR, Leveau JHJ (2014) Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ Microbiol 16(7):2212–2225CrossRefGoogle Scholar
  75. Scholten JD, Chang KH, Babbitt PC, Charest H, Sylvestre M, Dunawaymariano D (1991) Novel enzymatic hydrolytic dehalogenation of a chlorinated aromatic. Science 253(5016):182–185CrossRefGoogle Scholar
  76. See-Too WS, Ee R, Lim YL, Convey P, Pearce DA, Mohidin TBM, Yin WF, Chan KG (2017) Complete genome of Arthrobacter alpinus strain R3.8, bioremediation potential unraveled with genomic analysis. Stand Genomic Sci 12:52CrossRefGoogle Scholar
  77. Siddiqi MZ, Kim YJ, Hoang VA, Siddiqi MH, Huq MA, Yang DC (2014) Arthrobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Arch Microbiol 196(12):863–870CrossRefGoogle Scholar
  78. Silver S, Phung le T (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32(11–12):587–605CrossRefGoogle Scholar
  79. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54CrossRefGoogle Scholar
  80. Smith D, Martin D, Novossiolova T (2017) Microorganisms: good or evil, MIRRI provides biosecurity awareness. Curr Microbiol 74:299–308CrossRefGoogle Scholar
  81. Stevanovic-Carapina H, Milic J, Curcic M, Randjelovic J, Krinulovic K, Jovovic A, Brnjas Z (2016) Solid waste containing persistent organic pollutants in Serbia: from precautionary measures to the final treatment (case study). Waste Manag Res 34(7):677–685CrossRefGoogle Scholar
  82. Sun H, Gao T, Chen X, Hitchings MD, Li S, Chen T, Zhang H, An L, Dyson P (2016) Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer. J Biotechnol 222:23–24CrossRefGoogle Scholar
  83. Tittmann U, Lingens F (1980) Degradation of biphenyl by Arthrobacter simplex, strain BPA. FEMS Microbiol Lett 8:255–258CrossRefGoogle Scholar
  84. Tsoi TV, Zaitsev GM, Plotnikova EG, Kosheleva IA, Boronin AM (1991) Cloning and expression of the Arthrobacter globiformis KZT1 fcbA gene encoding dehalogenase (4-chlorobenzoate-4-hydroxylase) in Escherichia coli. FEMS Microbiol Lett 65(2):165–169CrossRefGoogle Scholar
  85. Unell M, Nordin K, Jernberg C, Stenstrom J, Jansson JK (2008) Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation 19(4):495–505CrossRefGoogle Scholar
  86. Vaishampayan PA, Kanekar PP, Dhakephalkar PK (2007) Isolation and characterization of Arthrobacter sp strain MCM B-436, an atrazine-degrading bacterium, from rhizospheric soil. Int Biodeterior Biodegrad 60(4):273–278CrossRefGoogle Scholar
  87. Vallack HW, Bakker DJ, Brandt I, Brostrom-Lunden E, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RD (1998) Controlling persistent organic pollutants-what next? Environ Toxicol Pharmacol 6(3):143–175CrossRefGoogle Scholar
  88. Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1555CrossRefGoogle Scholar
  89. Wagenknecht M, Meinhardt F (2011) Replication-involved genes of pAL1, the linear plasmid of Arthrobacter nitroguajacolicus Ru61a—phylogenetic and transcriptional analysis. Plasmid 65(2):176–184CrossRefGoogle Scholar
  90. Wang QF, Xie SG (2012) Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp strain. Int Biodeterior Biodegrad 71:61–66CrossRefGoogle Scholar
  91. Wang P, Qu Y, Zhou J (2009) Biodegradation of mixed phenolic compounds under high salt conditions and salinity fluctuations by Arthrobacter sp. W1. Appl Biochem Biotechnol 159(3):623–633CrossRefGoogle Scholar
  92. Wang YY, Miao B, Hou DM, Wu XL, Peng B (2012) Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp ZH2 strain. Process Biochem 47(6):936–940CrossRefGoogle Scholar
  93. Wang H, Liu Y, Li J, Lin M, Hu X (2016a) Biodegradation of atrazine by Arthrobacter sp C3, isolated from the herbicide-contaminated corn field. Int J Environ Sci Technol 13(1):257–262CrossRefGoogle Scholar
  94. Wang JH, Ren L, Jia Y, Ruth N, Shi YH, Qiao C, Yan YC (2016b) Degradation characteristics and metabolic pathway of 4-nitrophenol by a halotolerant bacterium Arthrobacter sp CN2. Toxicol Environ Chem 98(2):226–240CrossRefGoogle Scholar
  95. Wang Y, Zhai A, Zhang Y, Qiu K, Wang J, Li Q (2016c) Degradation of Swainsonine by the NADP-dependent alcohol dehydrogenase A1R6C3 in Arthrobacter sp. HW08. Toxins 8(5):1–12Google Scholar
  96. Wen ZD, Wu WM, Ren NQ, Gao DW (2016) Synergistic effect using vermiculite as media with a bacterial biofilm of Arthrobacter sp for biodegradation of di-(2-ethylhexyl) phthalate. J Hazard Mater 304(6):118–125CrossRefGoogle Scholar
  97. Wu DL, Zheng P, Mahmood Q, Yang XS (2007) Isolation and characteristics of Arthrobacter sp strain CW-1 for biodegradation of PAEs. J Zhejiang Univ-Sci A 8(9):1469–1474CrossRefGoogle Scholar
  98. Wu XL, Jin DC, Chao WH, Liang RX, Li Q, Yang Y, Qiu GZ (2009) Isolation and identification of four DBP-degrading strains and molecular cloning of the degradation genes. Huanjing Kexue 30(9):2722–2727Google Scholar
  99. Xu L, Shi W, Zeng XC, Yang Y, Zhou L, Mu Y, Liu Y (2017) Draft genome sequence of Arthrobacter sp. strain B6 isolated from the high-arsenic sediments in Datong Basin, China. Stand Genomic Sci 12:11CrossRefGoogle Scholar
  100. Yamazaki K-I, Takagi K, Fujii K, Iwasaki A, Harada N, Uchimura T (2008) Simultaneous biodegradation of chloro and methylthio-s-triazines using charcoal enriched with a newly developed bacterial consortium. J Pestic Sci 33(3):266–270CrossRefGoogle Scholar
  101. Yang X, Zhang C, He Z, Hu X, Guo J, Zhong Q, Wang J, Xiong L, Liu D (2013) Isolation and characterization of two n-butyl benzyl phthalate degrading bacteria. Int Biodeterior Biodegrad 76:8–11CrossRefGoogle Scholar
  102. Yang L, Chen X, She Q, Cao G, Liu Y, Chang VW, Tang CY (2018) Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: a critical review. Environ Int 10:1–19Google Scholar
  103. Yao Y, Tang H, Su F, Xu P (2015) Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Sci Rep 5:8642CrossRefGoogle Scholar
  104. Zevenhuizen LP (1966) Formation and function of the glycogen-like polysaccharide of Arthrobacter. Antonie Van Leeuwenhoek 32(4):356–372CrossRefGoogle Scholar
  105. Zevenhuizen LP (1992) Levels of trehalose and glycogen in Arthrobacter globiformis under conditions of nutrient starvation and osmotic stress. Antonie Van Leeuwenhoek 61:61–68CrossRefGoogle Scholar
  106. Zhang Y, Jiang Z, Cao B, Hu M, Wang ZG, Dong XN (2012) Chemotaxis to atrazine and detection of a xenobiotic catabolic plasmid in Arthrobacter sp DNS10. Environ Sci Pollut Res 19(1):2951–2958CrossRefGoogle Scholar
  107. Zhao X, Drlica K (2014) Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 21:1–6CrossRefGoogle Scholar
  108. Zhao X, Ma F, Feng C, Bai S, Yang J, Wang L (2017) Complete genome sequence of Arthrobacter sp. ZXY-2 associated with effective atrazine degradation and salt adaptation. J Biotechnol 248:43–47CrossRefGoogle Scholar
  109. Zhu LS, Ma TT, Wang JH, Xie H, Wang J, Xin CY, Shao B (2011) Enhancement of atrazine removal by free and immobilized Arthrobacter sp HB-5 in soil and wastewater. Soil Sediment Contam 20(1):87–97CrossRefGoogle Scholar
  110. Zhuang Z, Gartemann KH, Eichenlaub R, Dunaway-Mariano D (2003) Characterization of the 4-hydroxybenzoyl-coenzyme A thioesterase from Arthrobacter sp. strain SU. Appl Environ Microbiol 69(5):2707–2711CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaohong Guo
    • 1
  • Chengyun Xie
    • 1
  • Lijuan Wang
    • 1
  • Qinfan Li
    • 1
  • Yan Wang
    • 1
    Email author
  1. 1.College of Veterinary MedicineNorthwest A&F UniversityYanglingChina

Personalised recommendations