Advertisement

Backward and forward multilevel indicators for identifying key sectors of China’s intersectoral CO2 transfer network

  • Liyuan Wei
  • Zhen WangEmail author
  • Xiaoling ZhangEmail author
Research Article
  • 6 Downloads

Abstract

Many countries face a dilemma of economic growth and carbon emission mitigation, which is highly associated with energy consumption. In order to initiate effective policies for controlling carbon emissions, it is important to identify the key sectors in the value chain, thus proposing corresponding measures. To date, however, energy and carbon emissions have been studied mainly from a production or consumption perspective, with important interactions between sectors being seldom considered. In response, a new CO2 flow model is presented in which input-output analysis and network theory are combined with multilevel indicators to identify the key sectors affecting carbon emissions in terms of total, immediate, and mediative centrality effects. The model is demonstrated with an analysis of 2007 and 2012 China sectoral data, showing that Production & Supply of Electric Power, Steam and Hot Water (PESH), Nonmetal Mineral Products (NMMP), and Coal Mining & Dressing (CMDG) played key roles in China’s carbon transfer network; the roles of Electronic & Telecommunications Equipment (ETET), Instruments & Office Machinery (IOMY), and Electric Equipment & Machinery (EEMY) had the largest immediacy effect; and, acting as key transmission sectors, PESH, Smelting & Pressing of Metals (SPOM), and NMMP controlled a large share of CO2 transfer. The measures used are closely related to, and provide new insights into, the traditional indicators of sector centrality. At the same time, the proposed multilevel indicators are supplements for techniques that aim to instruct sector-level carbon mitigation policies.

Keywords

Carbon emissions Environmental input-output analysis Network theory Key sectors 

Notes

Acknowledgements

We appreciate the financial support of National Natural Science Foundation of China (No: 71834005).

Supplementary material

11356_2019_4350_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)

References

  1. Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–730.  https://doi.org/10.1121/1.1906679 CrossRefGoogle Scholar
  2. Beauchamp MA (1965) An improved index of centrality. Behav Sci 10(2):161–163.  https://doi.org/10.1002/bs.3830100205 CrossRefGoogle Scholar
  3. Blöchl F, Theis FJ, Vega-Redondo F, Fisher EON (2011) Vertex centralities in input-output networks reveal the structure of modern economies. Phys Rev E Stat Nonlinear Soft Matter Phys 83.  https://doi.org/10.1103/PhysRevE.83.046127
  4. Chang N, Lahr ML (2016) Changes in China’s production-source CO2 emissions: insights from structural decomposition analysis and linkage analysis. Econ Syst Res 28(2):224–242.  https://doi.org/10.1080/09535314.2016.1172476 CrossRefGoogle Scholar
  5. Chang Y, Ries RJ, Wang Y (2010) The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model. Energy Policy 38(11):6597–6603.  https://doi.org/10.1016/j.enpol.2010.06.030 CrossRefGoogle Scholar
  6. Chen S, Chen B (2015) Urban energy consumption: different insights from energy flow analysis, input-output analysis and ecological network analysis. Appl Energy 138:99–107.  https://doi.org/10.1016/j.apenergy.2014.10.055 CrossRefGoogle Scholar
  7. Chen S, Chen B (2016) Tracking inter-regional carbon flows: a hybrid network model. Environ Sci Technol 50(9):4731–4741.  https://doi.org/10.1021/acs.est.5b06299 CrossRefGoogle Scholar
  8. Chen GQ, Guo S, Shao L, Li JS, Chen ZM (2013) Three-scale input-output modeling for urban economy: carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simul 18:2493–2506.  https://doi.org/10.1016/j.cnsns.2012.12.029 CrossRefGoogle Scholar
  9. Dietzenbacher E, Romero Luna I, Bosma NS (2005) Using average propagation lengths to identify production chains in the andalusian economy. Estud Econ Aplicada 23(2):405–422Google Scholar
  10. Feng K, Davis SJ, Sun L, Li X, Guan D, Liu W, Liu Z, Hubacek K (2013) Outsourcing CO2 within China. Proc Natl Acad Sci 110(28):11654–11659.  https://doi.org/10.1073/pnas.1219918110 CrossRefGoogle Scholar
  11. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239.  https://doi.org/10.1016/0378-8733(78)90021-7 CrossRefGoogle Scholar
  12. Friedkin NE (1991) Theoretical foundations for centrality measures. Am J Sociol 96:1478–1504.  https://doi.org/10.1086/229694 CrossRefGoogle Scholar
  13. Garcia Muñiz AS (2015) Input-output linkages and network contagion in Greece: Demand and supply view. Appl Econ Int Dev 15(2):35–52Google Scholar
  14. García Muñiz AS, Raya AM, Carvajal CR (2008) Key sectors: a new proposal from network theory. Reg Stud 42(7):1013–1030.  https://doi.org/10.1080/00343400701654152 CrossRefGoogle Scholar
  15. Guan D, Peters GP, Weber CL, Hubacek K (2009) Journey to world top emitter: An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys Res Lett 36(4).  https://doi.org/10.1029/2008GL036540
  16. Hong J, Shen Q, Xue F (2016) A multi-regional structural path analysis of the energy supply chain in China’s construction industry. Energy Policy 92:56–68.  https://doi.org/10.1016/j.enpol.2016.01.017 CrossRefGoogle Scholar
  17. Huang L, Krigsvoll G, Johansen F, Liu Y, Zhang X (2018) Carbon emission of global construction sector. Renew Sust Energ Rev 81:1906–1916.  https://doi.org/10.1016/j.rser.2017.06.001 CrossRefGoogle Scholar
  18. Jiang M, Gao X, Guan Q, Hao X, An F (2019) The structural roles of sectors and their contributions to global carbon emissions: a complex network perspective. J Clean Prod 208:426–435.  https://doi.org/10.1016/j.jclepro.2018.10.127 CrossRefGoogle Scholar
  19. Kemeny JG, Snell JL (1960) Finite markov chains. Van Nostrand, Princeton, NJGoogle Scholar
  20. Lenzen M (2003) Environmentally important paths, linkages and key sectors in the Australian economy. Struct Chang Econ Dyn 14(1):1–34.  https://doi.org/10.1016/S0954-349X(02)00025-5 CrossRefGoogle Scholar
  21. Li JS, Zhou HW, Meng J, Yang Q, Chen B, Zhang YY (2018) Carbon emissions and their drivers for a typical urban economy from multiple perspectives: a case analysis for Beijing city. Appl Energy 226:1076–1086.  https://doi.org/10.1016/j.apenergy.2018.06.004 CrossRefGoogle Scholar
  22. Liang S, Xu M, Liu Z, Suh S, Zhang T (2013) Socioeconomic drivers of mercury emissions in China from 1992 to 2007. Environ Sci Technol 47(7):3234–3240.  https://doi.org/10.1021/es303728d CrossRefGoogle Scholar
  23. Liang S, Qu S, Xu M (2016a) Betweenness-based method to identify critical transmission sectors for supply chain environmental pressure mitigation. Environ Sci Technol 50(3):1330–1337.  https://doi.org/10.1021/acs.est.5b04855 CrossRefGoogle Scholar
  24. Liang S, Wang H, Qu S, Feng T, Guan D, Fang H, Xu M (2016b) Socioeconomic drivers of greenhouse gas emissions in the United States. Environ Sci Technol 50:7535–7545.  https://doi.org/10.1021/acs.est.6b00872 CrossRefGoogle Scholar
  25. Liang S, Qu S, Zhu Z, Guan D, Xu M (2017) Income-based greenhouse gas emissions of nations. Environ Sci Technol 51:346–355.  https://doi.org/10.1021/acs.est.6b02510 CrossRefGoogle Scholar
  26. Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, Peng S, Zhang Q, Hubacek K, Marland G, Andres RJ, Crawford-Brown D, Lin J, Zhao H, Hong C, Boden TA, Feng K, Peters GP, Xi F, Liu J, Li Y, Zhao Y, Zeng N, He K (2015) Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565):335–338.  https://doi.org/10.1038/nature14677 CrossRefGoogle Scholar
  27. Ma R, Chen B, Guan CH, Meng J, Zhang B (2018) Socioeconomic determinants of China’s growing CH4 emissions. J Environ Manag 228:103–116.  https://doi.org/10.1016/j.jenvman.2018.08.110 CrossRefGoogle Scholar
  28. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Networks 27:39–54.  https://doi.org/10.1016/j.socnet.2004.11.009 CrossRefGoogle Scholar
  29. Oh DY, Noguchi T, Kitagaki R, Park WJ (2014) CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew Sust Energ Rev 38:796–810.  https://doi.org/10.1016/j.rser.2014.07.036 CrossRefGoogle Scholar
  30. Ouyang X, Lin B (2015) An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector. Renew Sust Energ Rev 45:838–849.  https://doi.org/10.1016/j.rser.2015.02.030 CrossRefGoogle Scholar
  31. Peters GP, Weber CL, Guan D, Hubacek K (2007) China’s growing CO2 emissions - a race between increasing consumption and efficiency gains. Environ Sci Technol 41(17):5939–5944.  https://doi.org/10.1021/es070108f CrossRefGoogle Scholar
  32. Rasmussen PN (1956) Studies in inter-sectoral relations. Einar Harcks, North-HollandGoogle Scholar
  33. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603.  https://doi.org/10.1007/BF02289527 CrossRefGoogle Scholar
  34. Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A, White DR (2009) Economic networks: the new challenges. Science (New York, NY) 325(5939):422–425.  https://doi.org/10.1126/science.1173644 CrossRefGoogle Scholar
  35. Shan Y, Guan D, Zheng H, Ou J, Li Y, Meng J, Mi Z, Liu Z, Zhang Q (2018) China CO 2 emission accounts 1997-2015. Scientific Data 5.  https://doi.org/10.1038/sdata.2017.201
  36. Shao S, Liu J, Geng Y, Miao Z, Yang Y (2016) Uncovering driving factors of carbon emissions from China’s mining sector. Appl Energy 166:220–238.  https://doi.org/10.1016/j.apenergy.2016.01.047 CrossRefGoogle Scholar
  37. Sun X, An H, Gao X, Jia X, Liu X (2016) Indirect energy flow between industrial sectors in China: a complex network approach. Energy 94:195–205.  https://doi.org/10.1016/j.energy.2015.10.102 CrossRefGoogle Scholar
  38. Wang Z, Wei L, Niu B, Liu Y, Bin G (2017a) Controlling embedded carbon emissions of sectors along the supply chains: a perspective of the power-of-pull approach. Appl Energy 206:1544–1551.  https://doi.org/10.1016/j.apenergy.2017.09.108 CrossRefGoogle Scholar
  39. Wang Z, Xiao C, Niu B, Deng L, Liu Y (2017b) Identify sectors’ role on the embedded CO2transfer networks through China’s regional trade. Ecol Indic 80:114–123.  https://doi.org/10.1016/j.ecolind.2017.05.013 CrossRefGoogle Scholar
  40. Weber CL, Peters GP, Guan D, Hubacek K (2008) The contribution of Chinese exports to climate change. Energy Policy 36(9):3572–3577.  https://doi.org/10.1016/j.enpol.2008.06.009 CrossRefGoogle Scholar
  41. Xu B, Lin B (2016) Reducing CO2 emissions in China’s manufacturing industry: evidence from nonparametric additive regression models. Energy 101:161–173.  https://doi.org/10.1016/j.energy.2016.02.008 CrossRefGoogle Scholar
  42. Zhang B, Qu X, Meng J, Sun X (2017) Identifying primary energy requirements in structural path analysis: a case study of China 2012. Appl Energy 191:425–435.  https://doi.org/10.1016/j.apenergy.2017.01.066 CrossRefGoogle Scholar
  43. Zhang H, Chen L, Tong Y, Zhang W, Yang W, Liu M, Liu L, Wang H, Wang X (2018a) Impacts of supply and consumption structure on the mercury emission in China: An input-output analysis based assessment. J Clean Prod 170:96–107.  https://doi.org/10.1016/j.jclepro.2017.09.139 CrossRefGoogle Scholar
  44. Zhang Q, Xu J, Wang Y, Hasanbeigi A, Zhang W, Lu H, Arens M (2018b) Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows. Appl Energy 209:251–265.  https://doi.org/10.1016/j.apenergy.2017.10.084 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Resource and Environmental SciencesWuhan UniversityWuhanChina
  2. 2.Shenzhen Research InstituteCity University of Hong KongShenzhenPeople’s Republic of China
  3. 3.Department of Public PolicyCity University of Hong KongKowloon TongHong Kong

Personalised recommendations