Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 9, pp 9293–9304 | Cite as

Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response

  • Yi Xu
  • Chao Wang
  • Jun HouEmail author
  • Peifang Wang
  • Guoxiang You
  • Lingzhan Miao
Research Article

Abstract

In this paper, the effects of cerium oxide nanoparticles (CeO2 NPs) on the group bacterial behaviors were elaborated. After 36-h cultivation, the biofilm biomass was enhanced by the sub-lethal concentrations of 0.5 and 2 mg/L CeO2 NP exposure. Meanwhile, the promoted production of total amino acids in microbes further resulted in the increased surface hydrophobicity and percentage aggregation. To resist the CeO2 NPs stress, the biofilm exhibited a double-layer microstructure, with the protein (PRO) and living cells occupying the bottom, the polysaccharide (PS), and dead cells dominating the top. The bacterial diversity was highly suppressed and Citrobacter and Pseudomonas from the phylum of γ-Proteobacteria strongly dominated the biofilm, indicating the selective and enriched effects of CeO2 NPs on resistant bacteria. The stimulated inherent resistance of biofilm was reflected by the reduced adenosine triphosphate (ATP) content after 4 h exposure. The increased levels of reactive oxygen species (ROS) in the treatments of 8 h CeO2 NP exposure led to the upregulated quorum sensing signals of acylated homoserine lactone (AHL) and autoinducer 2 (AI-2), beneficial to mitigating the environmental disturbance of CeO2 NPs. These results provide evidences for the accelerating effects of CeO2 NPs on biofilm formation through oxidative stress, which expand the understanding of the ecological effects of CeO2 NPs.

Keywords

CeO2 nanoparticles Biofilm formation Bacterial community Oxidative stress Quorum sensing signals 

Notes

Acknowledgements

We are grateful for the grants from the projects supported by the National Natural Science Funds for Excellent Young Scholar (No.51722902); the National Natural Science Funds for Creative Research Groups of China (No.51421006); the Key Program of National Natural Science Foundation of China (No. 91647206); the Outstanding Youth Fund of Natural Science Foundation of Jiangsu, China (BK20160038); the Fundamental Research Funds for the Central Universities (2018B671X14); and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0636) and PAPD.

Supplementary material

11356_2019_4340_MOESM1_ESM.doc (21.8 mb)
ESM 1 (DOC 22339 kb)

References

  1. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424CrossRefGoogle Scholar
  2. Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  3. Bo F, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758CrossRefGoogle Scholar
  4. Cáp M, Váchová L, Palková Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxidative Med Cell Longev 11:976753Google Scholar
  5. Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24:350–354CrossRefGoogle Scholar
  6. Chen MY, Duujong L, Yang Z, Peng XF, Lai JY (2006) Fluorescent staining for study of extracellular polymeric substances in membrane biofouling layers. Environ Sci Technol 40:6642–6646CrossRefGoogle Scholar
  7. Chen MY, Lee DJ, Tay JH, Show KY (2007) Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75:467–474CrossRefGoogle Scholar
  8. Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289CrossRefGoogle Scholar
  9. Dou XY, He LN, Yang ZZ, Wang JL (2010) Reaction of N-acylhomoserine lactones with hydroxyl radicals: rates, products, and effects on signaling activity. Environ Sci Technol 44:7465–7469CrossRefGoogle Scholar
  10. Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur J Clin Microbiol 24:677–687CrossRefGoogle Scholar
  11. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633CrossRefGoogle Scholar
  12. Fleurke SR, Formentin, Külske (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170:2027–2030CrossRefGoogle Scholar
  13. Gambino M, Cappitelli F (2016) Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–178CrossRefGoogle Scholar
  14. García A, Delgado L, Torà JA, Casals E, González E, Puntes V, Font X, Carrera J, Sánchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72CrossRefGoogle Scholar
  15. Goh SY, Khan SA, Tee KK, Kasim NHA, Yin WF, Chan KG (2016) Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque. Sci Rep 6:20702CrossRefGoogle Scholar
  16. Golowczyc MA, Mobili P, Garrote GL, De LASM, Abraham AG, De Antoni GL (2009) Interaction between lactobacillus kefir and Saccharomyces lipolytica isolated from kefir grains: evidence for lectin-like activity of bacterial surface proteins. J Dairy Res 76:111–116CrossRefGoogle Scholar
  17. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRefGoogle Scholar
  18. Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954–966CrossRefGoogle Scholar
  19. Hassett DJ, Ma JF, Elkins JG, Mcdermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093CrossRefGoogle Scholar
  20. Hou X, Liu S, Zhang Z (2015a) Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge. Water Res 75:51–62CrossRefGoogle Scholar
  21. Hou J, You G, Xu Y, Wang C, Wang P, Miao L, Ao Y, Li Y, Lv B (2015b) Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity. Bioresour Technol 191:73–78CrossRefGoogle Scholar
  22. Hou J, You G, Xu Y, Wang C, Wang P, Miao L, Li Y, Ao Y, Lv B, Yang Y (2016) Long-term effects of CuO nanoparticles on the surface physicochemical properties of biofilms in a sequencing batch biofilm reactor. Appl Microbiol Biotechnol 100:1–11CrossRefGoogle Scholar
  23. Hou L, Zhou Q, Wu Q, Gu Q, Sun M, Zhang J (2017) Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant. Sci Total Environ 625:449–459CrossRefGoogle Scholar
  24. Hu X, Liu X, Yang X, Guo F, Su X, Chen Y (2018) Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: implications for wastewater treatment. Chem Eng J 348:35–45CrossRefGoogle Scholar
  25. Joelsson A, Kan B, Zhu J (2007) Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol 73:3742–3746CrossRefGoogle Scholar
  26. Kaldalu N, Mei R, Lewis K (2004) Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 48:890–896CrossRefGoogle Scholar
  27. Koetsem FV, Verstraete S, Meeren PVD, Laing GD (2015) Stability of engineered nanomaterials in complex aqueous matrices: settling behaviour of CeO2 nanoparticles in natural surface waters. Environ Res 142:207–214CrossRefGoogle Scholar
  28. Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11:9–12CrossRefGoogle Scholar
  29. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, Pedro MAD, Waldor MK (2009) D-amino acids govern stationary phase cell wall re-modeling in bacteria. Science 325:1552–1555CrossRefGoogle Scholar
  30. Lazareva A, Keller AA (2014) Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665CrossRefGoogle Scholar
  31. Maynard AD (2016) Nanotechnology: assessing the risks. Nano Today 1:22–33CrossRefGoogle Scholar
  32. Miyaoka Y, Haishima K, Takagi M, Haishima H, Jin A, Yamada Y (2010) Lack of CbrB in Pseudomonas putida affects not only amino acids metabolism but also different stress responses and biofilm development. Environ Microbiol 12:1748–1761CrossRefGoogle Scholar
  33. Molin S, Tolkernielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261CrossRefGoogle Scholar
  34. Nakao R, Ramstedt M, Sun NW, Uhlin BE (2012) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7:e51241CrossRefGoogle Scholar
  35. Nguyen D, Visvanathan C, Jacob P, Jegatheesan V (2015) Effects of nano cerium (IV) oxide and zinc oxide particles on biogas production. Int Biodeterior Biodegrad 102:165–171CrossRefGoogle Scholar
  36. Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588CrossRefGoogle Scholar
  37. Pontes MH, Babst M, Lochhead R, Oakeson K, Smith K, Dale C (2008) Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. Plos One 3:e3541CrossRefGoogle Scholar
  38. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. CSH Perspect Med 2:705–709Google Scholar
  39. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefGoogle Scholar
  40. Thill A, Zeyons O, Spalla O, Chauvat F, Jerôme Rose MAA, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156CrossRefGoogle Scholar
  41. Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429CrossRefGoogle Scholar
  42. Tou F, Yi Y, Feng J, Niu Z, Hui P, Qin Y, Guo X, Meng XZ, Min L, Hochella MF (2017) Environmental risk implications of metals in sludges from waste water treatment plants: the discovery of vast stores of metal-containing nanoparticles. Environ Sci Technol 51:4831–4840CrossRefGoogle Scholar
  43. Tuinier R, van Casteren WH, Looijesteijn PJ, Schols HA, Voragen AG, Zoon P (2015) Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59:160–166CrossRefGoogle Scholar
  44. Uzureau S, Lemaire J, Delaive E, Dieu M, Gaigneaux A, Raes M, Bolle XD, Letesson JJ (2010) Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. J Proteome Res 9:3200–3217CrossRefGoogle Scholar
  45. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168CrossRefGoogle Scholar
  46. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554CrossRefGoogle Scholar
  47. Wang S, Gao M, Li Z, She Z, Wu J, Dong Z, Liang G, Zhao Y, Feng G, Wang X (2016) Performance evaluation, microbial enzymatic activity and microbial community of a sequencing batch reactor under long-term exposure to cerium dioxide nanoparticles. Bioresour Technol 220:262–270CrossRefGoogle Scholar
  48. Wang P, You G, Hou J, Wang C, Xu Y, Miao L, Feng T, Zhang F (2018) Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure: structural, physicochemical and microbial properties and potential mechanism. Water Res 133:208–217CrossRefGoogle Scholar
  49. Wiesner MR, Lowry GV, Jones KL, Jr HM, Di GR, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462CrossRefGoogle Scholar
  50. Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y (2016) Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen. Environ Res 151:21–29CrossRefGoogle Scholar
  51. Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y (2017) Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor. Bioresour Technol 227:393–397CrossRefGoogle Scholar
  52. Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13:1705–1717CrossRefGoogle Scholar
  53. You G, Hou J, Xu Y, Wang C, Wang P, Miao L, Ao Y, Li Y, Lv B (2015) Effects of CeO2 nanoparticles on production and physicochemical characteristics of extracellular polymeric substances in biofilms in sequencing batch biofilm reactor. Bioresour Technol 194:91–98CrossRefGoogle Scholar
  54. Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730CrossRefGoogle Scholar
  55. Zimmermann A, Bauer MA, Kroemer G, Madeo F, Carmona-Gutierrez D (2014) When less is more: hormesis against stress and disease. Microbial Cell 1:150–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of EnvironmentHohai UniversityNanjingPeople’s Republic of China

Personalised recommendations