Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 10, pp 9739–9754 | Cite as

α-Amylase and α-glucosidase inhibitor effects and pancreatic response to diabetes mellitus on Wistar rats of Ephedra alata areal part decoction with immunohistochemical analyses

  • Jihene Ben LamineEmail author
  • Mouhamed Ali Boujbiha
  • Sabra Dahane
  • Amal Ben Cherifa
  • Aida Khlifi
  • Hassiba Chahdoura
  • Mouhamed Taher Yakoubi
  • Salima Ferchichi
  • Nacer El Ayeb
  • Lotfi Achour
Research Article
  • 130 Downloads

Abstract

Ephedra alata, known as a medicinal plant in China, was used in this study as aqueous extract from aerial parts, for diabetes mellitus treatment. This study was carried out on two parts, in vitro, we tested the effect of the studied extract on the inhibition of α-glucosidase and α-amylase activities, and in vivo on Wistar male rats receiving alloxan intraperitoneally at a rate of 125 mg/kg. Extract (100, 200, and 300 mg/kg of body weight) was administrated for 28 days by oral gavage. Blood glucose, amylase, lipase, and lipid profile level were determined. Oxidative stress was evaluated by enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and by estimation of lipid peroxidation and protein carbonyl (PC) level. Histopathological changes in pancreas were investigated under photonic microscopy using immunohistochemical procedure. Our findings showed that aqueous extract inhibited in vitro both α-glucosidase and α-amylase activities and its use in vivo at 300 mg/kg of body weight restored pancreas weight and weight gain, ameliorated significantly (p ˂ 0.05) biochemical parameters; it prevented the increase in lipid and protein oxidation and the decrease in enzymatic and non-enzymatic defense system. Histological study of treated animals showed a comparable healed regeneration of beta cells.

Keywords

Ephedra alata Diabetes mellitus Oxidative stress Alloxan Pancreas 

Notes

Acknowledgments

We would like to thank Dr. Habib Mosbah and Dr. Oussama Ahrasem for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Abourashed EA, El-alfy AT, Khan IA, Walker L (2003) Ephedra in perspective – a current review. 712:703–712Google Scholar
  2. Adler G, Kern H (1975) Regulation of exocrine pancreatic secretory process by insulin in vivo. Horm Metab Res 7:290–296.  https://doi.org/10.1055/s-0028-1093717 CrossRefGoogle Scholar
  3. Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 CrossRefGoogle Scholar
  4. Ahmed MF, Kazim SM, Ghori SS et al (2010) Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int J Endocrinol 2010.  https://doi.org/10.1155/2010/841090
  5. Akuyam SA, Isah HS, Ogala WN (2007) Evaluation of serum lipid profile of under-five Nigerian children. Ann Afr Med 6:119–123.  https://doi.org/10.4103/1596-3519.55722 CrossRefGoogle Scholar
  6. Al-douri NA (2000) A survey of medicinal plants and their traditional uses. Pharm Biol 38:74–79CrossRefGoogle Scholar
  7. Al-Khalil S, Alkofahi A, El-Eisawi D, Al-Shibib A (1998) Transtorine, a new quinoline alkaloid from Ephedra transitoria. J Nat Prod 61:262–263.  https://doi.org/10.1021/np9702998 CrossRefGoogle Scholar
  8. Al-Qarawi AA, Abd Allah EF, Hashem A (2012) Effect of Ephedra Alata on nucleic acids and nitrogen. Pak J Bot 44:425–428Google Scholar
  9. Andallu B, Varadacharyulu NC (2003) Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta 338:3–10CrossRefGoogle Scholar
  10. Anwar MM, Meki A-RMA (2003) Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol 135:539–547CrossRefGoogle Scholar
  11. Bargnoux A-S, Morena M, Badiou S et al (2009) Stress carbonylé et modifications oxydatives des protéines au cours de l’insuffisance rénale chronique Carbonyl stress and oxidatively modified proteins in chronic renal failure. Ann Biol Clin 67:153–158.  https://doi.org/10.1684/abc.2009.0295 CrossRefGoogle Scholar
  12. Barouki R (2006) Stress oxydant et vieillissement. Méd Sci 22:266–272.  https://doi.org/10.1051/medsci/2006223266 CrossRefGoogle Scholar
  13. Bell RH, Hye RJ (1983) Animal models of diabetes mellitus: physiology and pathology. J Surg Res 35:433–460.  https://doi.org/10.1016/0022-4804(83)90034-3 CrossRefGoogle Scholar
  14. Bopanna KN, Gadjils KJ, Boloraman ER, Rathore S (1997) Antidiabetic and antihyperlipidemic effect of neem seed kernel puder on alloxan diabetic rabbits. Indian J Pharmacol 29:162–167Google Scholar
  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  16. Breuer HWM (2003) Review of acarbose therapeutic strategies in the long-term treatment and in the prevention of type 2 diabetes. Int J Clin Pharmacol Ther 41:421–440CrossRefGoogle Scholar
  17. Buege AJ, Aust DS (1978) Microsomal lipid peroxidationGoogle Scholar
  18. Cakatay U (2005) Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab 31:551–557CrossRefGoogle Scholar
  19. Chahdoura H, Adouni K, Khlifi A et al (2017) Hepatoprotective effect of Opuntia microdasys (Lehm.) Pfeiff flowers against diabetes type II induced in rats. Biomed Pharmacother 94:79–87.  https://doi.org/10.1016/j.biopha.2017.07.093 CrossRefGoogle Scholar
  20. Chaieb, M., Boukhris M (1998) Flore succincte et illustrée des zones arides etsahariennes de Tunisie. In: Association pour la Protection de la Nature et del’Environnement L’or du temps, SfaxGoogle Scholar
  21. Culotta VC (2001) Superoxide dismutase, oxidative stress, and cell metabolism. Curr Top Cell Regul 36:117–132.  https://doi.org/10.1016/S0070-2137(01)80005-4 CrossRefGoogle Scholar
  22. Cunha WR, Arantes GM, Ferreira DS et al (2008) Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia 79:356–360.  https://doi.org/10.1016/j.fitote.2008.04.002 CrossRefGoogle Scholar
  23. Dalle-Donne I, Rossi R, Colombo R et al (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623.  https://doi.org/10.1373/clinchem.2005.061408 CrossRefGoogle Scholar
  24. Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258:296–308.  https://doi.org/10.1016/j.taap.2011.11.009 CrossRefGoogle Scholar
  25. DeFronzo RA, Abdul-Ghani M (2011) Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care 34.  https://doi.org/10.2337/dc11-s221
  26. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328.  https://doi.org/10.1016/j.numecd.2005.05.003 CrossRefGoogle Scholar
  27. Derbel S, Chaieb M (2012) Growth establishment and phenology of four woody Saharan species. Afr J Ecol 51:307–318.  https://doi.org/10.1111/aje.12036 CrossRefGoogle Scholar
  28. Derbel S, Touzard B, Triki MA, Chaieb M (2010) Seed germination responses of the Saharan plant species Ephedra alata ssp. alenda to fungicide seed treatments in the laboratory and the field. Flora Morphol Distrib Funct Ecol Plants 205:471–474.  https://doi.org/10.1016/j.flora.2009.12.025 CrossRefGoogle Scholar
  29. DiStefano JK, Watanabe RM (2010) Pharmacogenetics of anti-diabetes drugs. Pharmaceuticals 3:2610–2646.  https://doi.org/10.3390/ph3082610 CrossRefGoogle Scholar
  30. Eddouks M, Lemhadri A, Michel J-B (2005) Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 98:345–350.  https://doi.org/10.1016/J.JEP.2005.01.053 CrossRefGoogle Scholar
  31. Elahi-Moghaddam Z, Behnam-Rassouli M, Mahdavi-Shahri N et al (2013) Comparative study on the effects of type 1 and type 2 diabetes on structural changes and hormonal output of the adrenal cortex in male Wistar rats. J Diabetes Metab Disord 12:9.  https://doi.org/10.1186/2251-6581-12-9 CrossRefGoogle Scholar
  32. Erejuwa OO, Sulaiman SA, Wahab MSA et al (2010) Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci 11:2056–2066.  https://doi.org/10.3390/ijms11052056 CrossRefGoogle Scholar
  33. Eriksen M, Ezzati M, Holck S et al (2002) Overview/E. 14661–7000Google Scholar
  34. FAN Y, LI J, YIN Q et al (2015) Effect of extractions from Ephedra sinica Stapf on hyperlipidemia in mice. Exp Ther Med 9:619–625.  https://doi.org/10.3892/etm.2014.2117 CrossRefGoogle Scholar
  35. Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373.  https://doi.org/10.1161/01.ATV.0000133604.20182.cf CrossRefGoogle Scholar
  36. Favier A (2003) Le stress oxydant Intérêt conceptuel et expérimental dans la compréhension. Le Stress oxydant Intérêt conceptuel expérimental dans la compréhension. pp 108–115Google Scholar
  37. Flohé L, Günzler WA (1984) [12] assays of glutathione peroxidase. Methods Enzymol 105:114–120.  https://doi.org/10.1016/S0076-6879(84)05015-1 CrossRefGoogle Scholar
  38. Frohnert BI, Sinaiko AR, Serrot FJ et al (2011) Increased adipose protein carbonylation in human obesity. Obesity (Silver Spring) 19:1735–1741.  https://doi.org/10.1038/oby.2011.115 CrossRefGoogle Scholar
  39. Géloën A, Roy PE, Bukowiecki LJ (1989) Regression of white adipose tissue in diabetic rats. Am J Phys 257:547–553Google Scholar
  40. Genet S, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem 236:7–12CrossRefGoogle Scholar
  41. Gillies CL, Abrams KR, Lambert PC et al (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. Br Med J 334:299–302.  https://doi.org/10.1136/bmj.39063.689375.55 CrossRefGoogle Scholar
  42. Giribabu N, Kumar KE, Rekha SS et al (2014) Chlorophytum borivilianum root extract maintains near normal blood glucose, insulin and lipid profile levels and prevents oxidative stress in the pancreas of streptozotocin-induced adult male diabetic rats. Int J Med Sci 11:1172–1184.  https://doi.org/10.7150/ijms.9056 CrossRefGoogle Scholar
  43. Gorus FK, Malaisse WJ, Pipeleers DG (1982) Selective uptake of alloxan by pancreatic B-cells. Biochem J 208:513–515.  https://doi.org/10.1042/BJ2080513 CrossRefGoogle Scholar
  44. Grankvist K, Marklund SL, Täljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398CrossRefGoogle Scholar
  45. Gupta M., Mandowara D. JS (2008) Medicinal plants utilized by rural women of Rajasthan. Asian Agrihis 12321Google Scholar
  46. Haleng J, Pincemail J, Defraigne J-O et al (2007) Revue médicale de LiègeGoogle Scholar
  47. Hegazi GAE, El-lamey TM (2012) In vitro production of some phenolic compounds from Ephedraalata Decne. J Appl Environ Biol Sci 1:158–163Google Scholar
  48. Hellsten Y, Svensson M, Sjödin B et al (2001) Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 31:1313–1322CrossRefGoogle Scholar
  49. Ibragic S, Sofić E (2015) Chemical composition of various ephedra species. Bosn J Basic Med Sci 15:21–27.  https://doi.org/10.17305/bjbms.2015.539 CrossRefGoogle Scholar
  50. International Diabetes Federation (2016) Home. https://www.idf.org/. Accessed 28 May 2018
  51. Jaisson S, Lorimier S, Ricard-Blum S et al (2006) Impact of carbamylation on type I collagen conformational structure and its ability to activate human polymorphonuclear neutrophils. Chem Biol 13:149–159.  https://doi.org/10.1016/j.chembiol.2005.11.005 CrossRefGoogle Scholar
  52. Jamel MJ, Pereira LPM, Mello NB et al (2010) Blood carbonyl protein measurement as a specific oxidative stress biomarker after intestinal reperfusion in rats. Acta Cir Bras 25:59–62.  https://doi.org/10.1590/S0102-86502010000100014 CrossRefGoogle Scholar
  53. Kade IJ, Ogunbolude Y, Kamdem JP, Rocha JBT (2014) Influence of gallic acid on oxidative stress-linked streptozotocin-induced pancreatic dysfunction in diabetic rats. J Basic Clin Physiol Pharmacol 25:35–45.  https://doi.org/10.1515/jbcpp-2012-0062 CrossRefGoogle Scholar
  54. Kebièche M, Lakroun Z, Mraïhi Z, Soulimani R (2011) Effet antidiabétogène et cytoprotecteur de l’extrait butanolique de Ranunculus repens L. et de la quercétine sur un modèle expérimental de diabète alloxanique. Phytothérapie 9:274–282.  https://doi.org/10.1007/s10298-011-0651-4 CrossRefGoogle Scholar
  55. Khanna A, Rizvi F, Chander R (2002) Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol 82:19–22.  https://doi.org/10.1016/S0378-8741(02)00136-8 CrossRefGoogle Scholar
  56. Kobayashi T, Kamata K (2002) Modulation by hydrogen peroxide of noradrenaline-induced contraction in aorta from streptozotocin-induced diabetic rat. Eur J Pharmacol 441:83–89CrossRefGoogle Scholar
  57. Kritchevsky D (1978) Fiber, lipides and theroscelerosis. Am J clnical Nutr 315:65–74CrossRefGoogle Scholar
  58. Kusano C, Ferrari B, Kusano AC (2008) Total antioxidant capacity: a biomarker in biomedical and nutritional studies. End Res R Cardeal Arcoverde Brazil J Cell Mol Biol 7:1663–1641Google Scholar
  59. Lemper M, De Groef S, Stangé G et al (2016) A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia. Diabetologia 59:1948–1958.  https://doi.org/10.1007/s00125-016-4023-3 CrossRefGoogle Scholar
  60. Leverve X (2003) Hyperglycemia and oxidative stress: complex relationships with attractive prospects. Intensive Care Med 29:511–514CrossRefGoogle Scholar
  61. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796CrossRefGoogle Scholar
  62. Lévy P (2013) Interprétation des anomalies biologiques Amylase et Lipase. In: Société Nationale Française de Gastro-EntérologieGoogle Scholar
  63. Li F, Tang H, Xiao F et al (2011) Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules 16:9912–9924.  https://doi.org/10.3390/molecules16129912 CrossRefGoogle Scholar
  64. Li W, Yuan G, Pan Y et al (2017) Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol 08:74.  https://doi.org/10.3389/fphar.2017.00074 CrossRefGoogle Scholar
  65. Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: a comparative study. Food Chem 103:1003–1008.  https://doi.org/10.1016/J.FOODCHEM.2006.08.038 CrossRefGoogle Scholar
  66. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888CrossRefGoogle Scholar
  67. Marrif HI, Al Sunousi SI (2016) Pancreatic β cell mass death frontiers in pharmacologie review. Front Pharmacol 7Google Scholar
  68. Mercier Y, Gatellier P, Renerre M (2004) Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. 66:467–473.  https://doi.org/10.1016/S0309-1740(03)00135-9
  69. Missaoui S, Ben Rhouma K, Yacoubi M-T et al (2014) Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets. J Diabetes Res 2014:1–7.  https://doi.org/10.1155/2014/540242 CrossRefGoogle Scholar
  70. Miyata T, Kurokawa K, van Ypersele de Strihou C (2000) Relevance of oxidative and carbonyl stress to long-term uremic complications. Kidney Int Suppl 76:S120–S125CrossRefGoogle Scholar
  71. Nabli MA (1991) Diversité floristique en Tunisie. In: Rejdali M, Heywood VH (eds) Conservation des resources végétales. Actes Ed, RabatGoogle Scholar
  72. Nawwar MAM, El-Sissi HI, Barakat HH (1984) Flavonoid constituents of Ephedra alata. Phytochemistry 23:2937–2939.  https://doi.org/10.1016/0031-9422(84)83045-9 CrossRefGoogle Scholar
  73. Nawwar MAM, Barakat HH, Buddrus J, Linscheid M (1985) Constituents of Ephedra. 24:818–819Google Scholar
  74. Nissen SE, He M (2010) Setting the record straight. Am Med Assoc 303:24/31CrossRefGoogle Scholar
  75. Noor A, Gunasekaran S, Vijayalakshmi MA (2017) Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Aloe vera extract. Pharm Res 9:S99–S104.  https://doi.org/10.4103/pr.pr_75_17 CrossRefGoogle Scholar
  76. Okutan L, Kongstad KT, Jäger AK, Staerk D (2014) High-resolution α-amylase assay combined with high-performance liquid chromatography–solid-phase extraction–nuclear magnetic resonance spectroscopy for expedited identification of α-amylase inhibitors: proof of concept and α-amylase inhibitor in cinnamon. J Agric Food Chem 62:11465–11471.  https://doi.org/10.1021/jf5047283 CrossRefGoogle Scholar
  77. Omary N, Akli Y (2011) Influence de la streptozotocine sur l’axe corticotrope du rat Wistar (Rattus norvegicus). Bull Soc 80:907–938Google Scholar
  78. Palici IF, Liktor-Busa E, Zupkó I et al (2015) Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants. Acta Biol Hung 66:385–394.  https://doi.org/10.1556/018.66.2015.4.3 CrossRefGoogle Scholar
  79. Palla J, Abdeljlil AB, Desnuelle P (1968) Action de la biosynthèse de l’amylase et de quelques autres enzymes du pancréas de rat. Biochim Biophys Acta - Gen Subj 158:25–35.  https://doi.org/10.1016/0304-4165(68)90068-8 CrossRefGoogle Scholar
  80. Panneerselvam SR, Govindasamy S (2004) Effect of sodium molybdate on the status of lipids, lipid peroxidation and antioxidant systems in alloxan-induced diabetic rats. Clin Chim Acta 345:93–98.  https://doi.org/10.1016/j.cccn.2004.03.005 CrossRefGoogle Scholar
  81. Phinney KW, Ihara T, Sander LC (2005) Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis. J Chromatogr A 1077:90–97.  https://doi.org/10.1016/J.CHROMA.2005.04.068 CrossRefGoogle Scholar
  82. Punitha ISR, Rajendran K, Shirwaikar A, Shirwaikar A (2005) Alcoholic stem extract of Coscinium fenestratum regulates carbohydrate metabolism and improves antioxidant status in streptozotocin-nicotinamide induced diabetic rats. Evid Based Complement Alternat Med 2:375–381.  https://doi.org/10.1093/ecam/neh099 CrossRefGoogle Scholar
  83. Ramadan BK, Schaalan MF, Tolba AM (2017) Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement Altern Med 17:37.  https://doi.org/10.1186/s12906-016-1530-1 CrossRefGoogle Scholar
  84. Réus GZ, dos Santos MAB, Abelaira HM et al (2016) Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev 32:278–288CrossRefGoogle Scholar
  85. Rifai N, Warnick R (2006) Lipids, lipoproteins, apolipoproteins and other cardiovascular risk factors. Tietz Textb Clin Chem Mol Diagnosis 918–922Google Scholar
  86. Rükgauer M, Neugebauer RJ, Plecko T (2001) The relation between selenium, zinc and copper concentration and the trace element dependent antioxidative status. J Trace Elem Med Biol 15:73–78.  https://doi.org/10.1016/S0946-672X(01)80046-8 CrossRefGoogle Scholar
  87. Sabu MC, Smitha K, Kuttan R (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83:109–116CrossRefGoogle Scholar
  88. Schmid H, Forman LA, Cao X et al (1999) Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 48:603–608.  https://doi.org/10.2337/DIABETES.48.3.603 CrossRefGoogle Scholar
  89. Schmidt JS, Lauridsen MB, Dragsted LO et al (2012) Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of α-glucosidase inhibitors in apple peel (Malus × domestica Borkh.). Food Chem 135:1692–1699.  https://doi.org/10.1016/j.foodchem.2012.05.075 CrossRefGoogle Scholar
  90. Singh N, Tyagi SD, Agarwal SC (1989) Effects of long term feeding of acetone extract of Momordica charantia (whole fruit powder) on alloxan diabetic albino rats. Ind]. Physiol Pharmae 33Google Scholar
  91. Sintayehu B, Raghavendra Y, Asres K (2011) Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from Cineraria abyssinica Sch. Bip. Exa. Rich. J Appl Pharm Sci 02:44–49.  https://doi.org/10.7324/JAPS.2012.2407 CrossRefGoogle Scholar
  92. Soni MG, Carabin IG, Griffiths JC, Burdock GA (2004) Safety of ephedra: lessons learned. Toxicol Lett 150:97–110.  https://doi.org/10.1016/J.TOXLET.2003.07.006 CrossRefGoogle Scholar
  93. Striegel L, Kang B, Pilkenton SJ et al (2015) Effect of black tea and black tea pomace polyphenols on α−glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention. Front Nutr 2:3.  https://doi.org/10.3389/fnut.2015.00003 CrossRefGoogle Scholar
  94. Tang YZ, Wang G, Jiang ZH et al (2015) Efficacy and safety of vildagliptin, sitagliptin, and linagliptin as add-on therapy in Chinese patients with T2DM inadequately controlled with dual combination of insulin and traditional oral hypoglycemic agent. Diabetol Metab Syndr 7:1–9.  https://doi.org/10.1186/s13098-015-0087-3 CrossRefGoogle Scholar
  95. Thomson M, Al-Qattan KK, Bordia T, Ali M (2006) Including garlic in the diet may help lower blood glucose, cholesterol, and triglycerides. J Nutr 136:800S–802S.  https://doi.org/10.1093/jn/136.3.800S CrossRefGoogle Scholar
  96. Tiedge M, Richter T, Lenzen S (2000) Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys 375:251–260.  https://doi.org/10.1006/ABBI.1999.1666 CrossRefGoogle Scholar
  97. Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit 12:RA130–RA147Google Scholar
  98. Upreti J, Ali S, Basir SF et al (2014) Amelioration of altered antioxidant status by sodium-orthovanadate and Azadirachta indica leaf extract on cardiac and skeletal muscles antioxidant defence system in streptozotocin induced diabetic. 3:2176–2187Google Scholar
  99. Uriu-Adams JY, Rucker RB, Commisso JF, Keen CL (2005) Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J Nutr Biochem 16:312–320.  https://doi.org/10.1016/j.jnutbio.2005.01.007 CrossRefGoogle Scholar
  100. Vincent AM, Russell JW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25:612–628.  https://doi.org/10.1210/er.2003-0019 CrossRefGoogle Scholar
  101. Visavadiya NP, Narasimhacharya AVRL (2011) Ameliorative effects of herbal combinations in hyperlipidemia. Oxidative Med Cell Longev 2011:160408.  https://doi.org/10.1155/2011/160408 CrossRefGoogle Scholar
  102. Waguri M, Yamamoto K, Miyagawa JI et al (1997) Demonstration of two different processes of beta-cell regeneration in a new diabetic mouse model induced by selective perfusion of alloxan. Diabetes 46:1281–1290CrossRefGoogle Scholar
  103. Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49:642–652CrossRefGoogle Scholar
  104. Xiu L-M, Miura AB, Yamamoto K et al (2001) Pancreatic islet regeneration by ephedrine in mice with streptozotocin-induced diabetes. Am J Chin Med 29:493–500.  https://doi.org/10.1142/S0192415X01000514 CrossRefGoogle Scholar
  105. Yadav D, Nair S, Norkus EP, Pitchumoni CS (2000) Nonspecific hyperamylasemia and hyperlipasemia in diabetic ketoacidosis: incidence and correlation with biochemical abnormalities. Am J Gastroenterol 95:3123–3128.  https://doi.org/10.1111/j.1572-0241.2000.03279.x CrossRefGoogle Scholar
  106. Yen M, Ewald MB (2012) Toxicity of weight loss agents. J Med Toxicol 8:145–152.  https://doi.org/10.1007/s13181-012-0213-7 CrossRefGoogle Scholar
  107. Zengin G, Guler GO, Aktumsek A et al (2015) Enzyme inhibitory properties, antioxidant activities, and phytochemical profile of three medicinal plants from Turkey. Adv Pharmacol Sci 2015:1–8.  https://doi.org/10.1155/2015/410675 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jihene Ben Lamine
    • 1
    • 2
    Email author
  • Mouhamed Ali Boujbiha
    • 1
  • Sabra Dahane
    • 1
  • Amal Ben Cherifa
    • 1
    • 3
  • Aida Khlifi
    • 1
  • Hassiba Chahdoura
    • 1
  • Mouhamed Taher Yakoubi
    • 4
  • Salima Ferchichi
    • 5
  • Nacer El Ayeb
    • 1
  • Lotfi Achour
    • 1
  1. 1.Institut Supérieur de Biotechnologie de Monastir, Laboratoire de Recherche : Bioressources, Biologie Intégrative & ValorisationUniversité de MonastirMonastirTunisia
  2. 2.Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  3. 3.Faculté des Sciences de GabesUniversité de GabesGabesTunisia
  4. 4.Laboratoire d’anatomie et pathologieCentre Hôpital Universitaire Farhat HachedSousseTunisia
  5. 5.Laboratoire de biochimieCentre Hôpital Universitaire Farhat HachedSousseTunisia

Personalised recommendations