Advertisement

Biocompatibility and biodistribution of surface-modified yttrium oxide nanoparticles for potential theranostic applications

  • Hossam SayourEmail author
  • Samr Kassem
  • Francesco Canfarotta
  • Joanna Czulak
  • Medhat Mohamed
  • Sergey Piletsky
Nanotechnology, Nanopollution, Nanotoxicology and Nanomedicine (NNNN)
  • 21 Downloads

Abstract

The surface of ultrafine yttrium oxide nanoparticles (NPs) with mean size of 7–8 nm was modified with a functional polymer layer to improve their dispersion and impart fluorescent properties for imaging purposes. Surface functionalization was achieved by silanization of yttrium oxide NPs with 3-trimethoxysilylpropyl methacrylate followed by grafting of a co-polymer made of acrylic acid (AA) and ethylene glycol methacrylate phosphate (EGMP). The polymer shell decreases the surface energy of NPs, enhances their polarity, and, as a result, improves their colloidal stability. The synthesized NPs are capable of scavenging free radicals and for this reason have therapeutic potential that warrants further investigations. Furthermore, these stabilized core–shell NPs showed a very low cytotoxicity, confirming that the polymer shell sensibly improves the biocompatibility of bare yttrium oxide NPs, which are otherwise toxic on their own. Poly-EGMP yttrium NPs proved to be safe up to 0.1 mg/g body weight in 1 month old Sprague–Dawley rats, showing also the ability to cross the blood–brain barrier short time after tail injection. The surface modification of yttrium NPs here described allows these NPs to be potentially used in theranostics to reduce neurodegenerative damage due to the heat stress.

Keywords

Surface modification Graft polymerization Core–shell Yttrium oxide nanoparticles Blood–brain barrier 

Notes

Funding information

This work was supported by the Science and Technology Development Fund (STDF), Short Term Fellowship-cycle 4, Egypt (grant number STF-6623).

Supplementary material

11356_2019_4309_MOESM1_ESM.pdf (211 kb)
ESM 1 (PDF 210 kb)

References

  1. Ammerman NC, Beler-Sexton M, Abdu FA (2008) Growth and maintenance of Vero cell lines. Curr Protoc Microbiol 1:1–10.  https://doi.org/10.1002/9780471729259.mca04es11. Google Scholar
  2. Ananikov VP, Orlov NV, Beletskaya IP (2007) Highly efficient nickel-based heterogeneous catalytic system with nano sized structural organization for selective Se−H bond addition to terminal and internal alkynes. Organometallics 26:740–750CrossRefGoogle Scholar
  3. Andreescu ES, Leiter JC, Erlichman JS (2010) Method of neuroprotection from oxidant injury using metal oxide nanoparticles. US 2010/0098768 A1 United States, Patent Application PublicationGoogle Scholar
  4. Asati A, Santimukul S, Charalam-bos K, Manuel JP (2010) Surface charge dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4:5321–5331CrossRefGoogle Scholar
  5. Badran M, Azizah I, Reda M, Elnimr T (2014) Critical evaluating for five digestion methods using ICP-MS. J Pharm Sci Innov (JPSI) 3:30–34CrossRefGoogle Scholar
  6. Bancroft JD, Gamble M (2002) Theory and practice of histological techniques, 5th edn. Churchill Livingstone, London, pp 125–138Google Scholar
  7. Becker S, Soukup JM, Gallagher JE (2002) Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol in Vitro 16:209–218CrossRefGoogle Scholar
  8. Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87:212–251CrossRefGoogle Scholar
  9. Canfarotta F, Whitcombe MJ, Piletsky SA (2013) Research review paper, polymeric nanoparticles for optical sensing. Biotechnol Adv 31:1585–1599CrossRefGoogle Scholar
  10. Celi P (2011) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol 33:233–240CrossRefGoogle Scholar
  11. Colditz IG, Watson DL, Gray GD, Eady SJ (1996) Some relationships between age, immune responsiveness and resistance to parasites in ruminants. Int J Parasitol 26:869–877CrossRefGoogle Scholar
  12. Dan M, Wu P, Grulke EA, Graham UM, Unrine JM, Yokel RA (2012) Ceria engineered nanomaterial distribution in and clearance from blood: size matters. Nanomedicine 7:95–110CrossRefGoogle Scholar
  13. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149CrossRefGoogle Scholar
  14. Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G (2009) Recent advances in medicinal chemistry and pharmaceutical technology—strategies for drug delivery to the brain. Curr Top Med Chem 9:182–196CrossRefGoogle Scholar
  15. Dimopoulos S, Mayer Ch E, Rudolf F, Stelling J (2014) Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics 30:2644–2651CrossRefGoogle Scholar
  16. Duff GC, Galyean ML (2007) Board-invited review: recent advances in management of highly stressed, newly received feedlot cattle. J Anim Sci 85:823–840CrossRefGoogle Scholar
  17. Gal AA, Cagle PT (2005) The 100-year anniversary of the description of the frozen section procedure. JAMA 24:3135–3137CrossRefGoogle Scholar
  18. Guisnet M, Barbier J, Barrault J, Bouchoule C, Duprez D, Pérot G and Montassier C (1993) Heterogeneous Catalysis and Fine Chemicals III. Elsevier 78:421–423Google Scholar
  19. Hartung J (2003) Effects of transport on health of farm animals. Vet Res Commun 27:525–527CrossRefGoogle Scholar
  20. Juliane H, Andreas Bernkop-Schnürch A (2009) Chitosan solutions and particles: evaluation of their permeation enhancing potential on MDCK cells used as blood brain barrier model. Int J Pharm 376:104–109CrossRefGoogle Scholar
  21. Kassem SH, Mohamed MN, Ahmed MA, El-Dek SI (2015) Ultrafine yttria nanoparticles: synthesis and characterization. J Chin Adv Mat Soc 3:280–286CrossRefGoogle Scholar
  22. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz AJ, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338CrossRefGoogle Scholar
  23. Klochkov VK, Grygorova G, Sedyh OO, Malyukin YV (2012) The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids Surf A Physicochem Eng Asp 409:176–182CrossRefGoogle Scholar
  24. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle—bound drugs across the blood-brain barrier. J Drug Target 10:317–325CrossRefGoogle Scholar
  25. Li S, Guz NV, Sokolov I (2011) A modified in vitro stripping method to automate the calculation of geometry of corneocytes imaged with fluorescent microscopy: example of moisturizer treatment. Skin Res Technol 17:213–219CrossRefGoogle Scholar
  26. Malhotra M, Ciaran Lane C, Tomaro-Duchesneau C, Prakash Sh SS (2011) A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomedicine 6:485–494Google Scholar
  27. Medina-Plaza C, Rodriguez-Mendez ML, Sutter P, Tong X, Sutter E (2015) Nanoscale Au-In alloy-oxide core shell particles as electro catalysts for efficient hydroquinone detection. J Phys Chem C 119:25100–25107CrossRefGoogle Scholar
  28. Moczko E, Guerreiro A, Piletska E, Piletsky SA (2013) PEG-stabilized core shell surface imprinted nanoparticles. Langmuir 29:9891–9896CrossRefGoogle Scholar
  29. Moshfegh AZ (2009) Nanoparticle catalysts. J Phys D Appl Phys 42:233001–233030CrossRefGoogle Scholar
  30. Murase N, Taniguchi S-I, Takano E, Takeuchi T (2015) Fluorescence reporting of binding interactions of target molecules with core–shell-type cortisol-imprinted polymer particles using environmentally responsible fluorescent-labeled cortisol. Macromol Chem Phys 216:1396–1404CrossRefGoogle Scholar
  31. Nagpal K, Singh Sh K, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58:1423–1430CrossRefGoogle Scholar
  32. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  33. Oberdörster G, Eva O, Jan O (2005) Nanotoxicology, an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–883CrossRefGoogle Scholar
  34. Patil S, Amanda S, Eric H, William S, Sudipta S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607CrossRefGoogle Scholar
  35. Perez-Moral N, Andrew G, Mayes AG (2007) Molecularly imprinted multi-layer core-shell nanoparticles—a surface grafting approach. Macromol Rapid Commun 28:2170–2175CrossRefGoogle Scholar
  36. Piccione G, Casella S, Giannetto C, Bazzano M, Giudice E, Fazio F (2013) Oxidative stress associated with road transportation in ewes. Small Rumin Res 112:235–238CrossRefGoogle Scholar
  37. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT (2010) Nanoceria exhibit redox state dependent catalase mimetic activity. Chem Commun 46:2736–2738CrossRefGoogle Scholar
  38. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51CrossRefGoogle Scholar
  39. Pregel P, Bollo E, Cannizzo F, Biolatti B, Contato E, Biolatti P (2005) Antioxidant capacity as a reliable marker of stress in dairy calves transported by road. Vet Rec 156:53–54CrossRefGoogle Scholar
  40. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int.  https://doi.org/10.1155/2014/761264
  41. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuro protective. Biochem Biophys Res Commun 342:86–91CrossRefGoogle Scholar
  42. Shang L, Nienhaus K, Jiang X, Yang L, Landfester K, Mailänder V, Simmet T, Nienhaus GU (2014) Nanoparticle interactions with live cells: quantitative fluorescence microscopy of nanoparticle size effects. Beilstein J Nanotechnol 5:2388–2397CrossRefGoogle Scholar
  43. Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva A (2012) MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem 114:785–796CrossRefGoogle Scholar
  44. Tan W, Zhong YS, Raoul K (1992) Development of submicron chemical fiber optic sensors. Anal Chem 64:2985–2990CrossRefGoogle Scholar
  45. Tseng MT, Lu X, Duan X, Hardas S, Sultana R, Unrine JM, Graham U, Butterfield DA, Grukle EA, Yokel R, Wu P (2012) Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol Appl Pharmacol 260:173–182CrossRefGoogle Scholar
  46. Urban-Chmiel R (2006) The influence of transport stress on oxidative stress parameters in bovine leukocytes. Slov Vet Res 43:243–246Google Scholar
  47. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74CrossRefGoogle Scholar
  48. Vlieghe P, Khrestchatisky M (2013) Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 33:457–516CrossRefGoogle Scholar
  49. Wernicki A, Urban-Chmiel R, Kankofer M, Mikucki P, Puchalski A, Tokarzewski S (2006) Evaluation of plasma cortisol and TBARS levels in calves after short-term transportation. Rev Méd Vét 157:30–34Google Scholar
  50. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR, Myosin V (2003) Walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065CrossRefGoogle Scholar
  51. Yokel RA, Tu CA, Robert M, Sarita SH, Butterfield DA, Rukhsana S, Michael G, Michael TT, Mo Dan MS, Hamed H, Jason MU, Uschi MG, Peng W, Eric AG (2012) Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats. Toxicol Sci 127:256–268CrossRefGoogle Scholar
  52. Yokel RA, Michael TT, Mo Dan MS, Jason MU, Uschi MG, Peng W, Eric AG (2013) Biodistribution and biopersistence of ceria engineered nanomaterials: size dependence. Nanomedicine 9:398–407CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hossam Sayour
    • 1
    Email author
  • Samr Kassem
    • 2
  • Francesco Canfarotta
    • 3
  • Joanna Czulak
    • 4
  • Medhat Mohamed
    • 5
  • Sergey Piletsky
    • 4
  1. 1.Biomedical Chemistry Unit, Department of Chemistry and Nutritional Deficiency DisordersAnimal Health Research InstituteGizaEgypt
  2. 2.Department of BiotechnologyAnimal Health Research InstituteGizaEgypt
  3. 3.MIP Diagnostics Ltd.University of LeicesterLeicesterUK
  4. 4.Department of ChemistryUniversity of LeicesterLeicesterUK
  5. 5.Department of Animal Medicine, Faculty of Veterinary MedicineUniversity of Kafr El-SheikhKafr El-SheikhEgypt

Personalised recommendations