Environmental Science and Pollution Research

, Volume 26, Issue 9, pp 8468–8484 | Cite as

Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies

  • Behnam Asgari Lajayer
  • Nader Khadem Moghadam
  • Mohammad Reza Maghsoodi
  • Mansour GhorbanpourEmail author
  • Khalil Kariman
Review Article


Accumulation of heavy metals (HMs) in soil, water and air is one of the major environmental concerns worldwide, which mainly occurs due to anthropogenic activities such as industrialization, urbanization, and mining. Conventional remediation strategies involving physical or chemical techniques are not cost-effective and/or eco-friendly, reinforcing the necessity for development of novel approaches. Phytoextraction has attracted considerable attention over the past decades and generally refers to use of plants for cleaning up environmental pollutants such as HMs. Compared to other plant types such as edible crops and medicinal plants, ornamental plants (OPs) seem to be a more viable option as they offer several advantages including cleaning up the HMs pollution, beautification of the environment, by-product generation and related economic benefits, and not generally being involved in the food/feed chain or other direct human applications. Phytoextraction ability of OPs involve diverse detoxification pathways such as enzymatic and non-enzymatic (secondary metabolites) antioxidative responses, distribution and deposition of HMs in the cell walls, vacuoles and metabolically inactive tissues, and chelation of HMs by a ligand such as phytochelatins followed by the sequestration of the metal–ligand complex into the vacuoles. The phytoextraction efficiency of OPs can be improved through chemical, microbial, soil amending, and genetic approaches, which primarily target bioavailability, uptake, and sequestration of HMs. In this review, we explore the phytoextraction potential of OPs for remediation of HMs-polluted environments, underpinning mechanisms, efficiency improvement strategies, and highlight the potential future research directions.


Heavy metals Particulate matters Ornamental plants Phytoextraction Detoxification 



  1. Aksoy A, Öztürk M (1997) Nerium oleander L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Sci Total Environ 205:145–150CrossRefGoogle Scholar
  2. Al-Khashman OA, Ala’a H, Ibrahim KA (2011) Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments. Environ Pollut 159:1635–1640CrossRefGoogle Scholar
  3. Alloway B (2012) Trace metals and metalloids in soils and their bioavailability: heavy metals in soils. Springer Press, LondonGoogle Scholar
  4. Al-Wabel MI, Usman AR, El-Naggar AH, Aly AA, Ibrahim HM, Elmaghraby S, Al-Omran A (2015) Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci 22:503–511CrossRefGoogle Scholar
  5. Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth Sci Rev 2017Google Scholar
  6. Arunakumara K, Walpola BC, Yoon MH (2013) Alleviation of phyto-toxicity of copper on agricultural plants. J Korean Soc Appl Biol Chem 56:505–517CrossRefGoogle Scholar
  7. Asgari Lajayer B, Ghorbanpour M, Nikabadi S (2017a) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotox Environ Safe 145:377–390CrossRefGoogle Scholar
  8. Asgari Lajayer H, Savaghebi G, Hadian J, Hatami M, Pezhmanmehr M (2017b) Comparison of copper and zinc effects on growth, micro-and macronutrients status and essential oil constituents in pennyroyal (Mentha pulegium L.). Braz J Bot 40:379–388CrossRefGoogle Scholar
  9. Asgari Lajayer B, Najafi N, Moghiseh E, Mosaferi M, Hadian J (2018) Removal of heavy metals (Cu2+ and Cd2+) from effluent using gamma irradiation, titanium dioxide nanoparticles and methanol. Journal of Nanostructure in Chemistry 8(4):483–496CrossRefGoogle Scholar
  10. Baycu G, Tolunay D, Özden H, Günebakan S (2006) Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut 143:545–554CrossRefGoogle Scholar
  11. Borghei M, Arjmandi R, Moogouei R (2011) Potential of Calendula alata for phytoremediation of stable cesium and lead from solutions. Environ Monit Assess 18:63–68CrossRefGoogle Scholar
  12. Bosiacki M (2008) Accumulation of cadmium in selected species of ornamental plants. Acta Sci Pol Hortorum Cultus 7:21–31Google Scholar
  13. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA (2010) Particulate matter air pollution and cardiovascular disease. Circulation 121:2331–2378CrossRefGoogle Scholar
  14. Caldelas C, Araus J, Febrero A, Bort J (2012a) Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol Plant 34:1217–1228CrossRefGoogle Scholar
  15. Caldelas C, Bort J, Febrero A (2012b) Ultrastructure and subcellular distribution 637 of Cr in Iris pseudacorus L. Using TEM and X-ray microanalysis. Cell Biol Toxicol 28(1):57–68CrossRefGoogle Scholar
  16. Casierra-Posada F, Blanke MM, Guerrero-Guío JC (2014) Iron tolerance in Calla Lilies (Zantedeschia aethiopica ). Gesunde Pflanz 66:63–68CrossRefGoogle Scholar
  17. Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M (2012) Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231:36–42CrossRefGoogle Scholar
  18. Cay S (2016) Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. Environ Monit Assess 188:320CrossRefGoogle Scholar
  19. Čeburnis D, Steinnes E (2000) Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmos Environ 34(4):265–4271Google Scholar
  20. Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay S (2012) A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India. Environ Monit Assess 184:5139–5150CrossRefGoogle Scholar
  21. Checcucci A, Bazzicalupo M, Mengoni A (2017) Exploiting nitrogen-fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In: Naser A, Anjum A, Gill SS, Tuteja N (eds) Enhancing Cleanup of Environmental Pollutants: Biological Approaches, vol 1. Springer International Publishing, Cham, pp 275–288CrossRefGoogle Scholar
  22. Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15:299–326CrossRefGoogle Scholar
  23. Choo T, Lee C, Low K, Hishamuddin O (2006) Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 62:961–967CrossRefGoogle Scholar
  24. Choppala G, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391CrossRefGoogle Scholar
  25. Christophersen HM, Smith SE, Pope S, Smith FA (2009) No evidence for competition between arsenate and phosphate for uptake from soil by medic or barley. Environ Int 35:485–490CrossRefGoogle Scholar
  26. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182CrossRefGoogle Scholar
  27. Cui S, Zhou Qx, Wei Sh, Zhang W, Cao L, Ren Lp (2007) Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. J Hazard Mater 146:341–346CrossRefGoogle Scholar
  28. Cui S, Zhang T, Zhao S, Li P, Zhou Q, Zhang Q, Han Q (2013) Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil. Int J Phytoremed 15:299–306CrossRefGoogle Scholar
  29. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106CrossRefGoogle Scholar
  30. Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Bidar G, Grand C, De Vaufleury A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the North of France. Sci Total Environ 407:5564–5577CrossRefGoogle Scholar
  31. Drążkiewicz M, Baszyński T (2010) Interference of nickel with the photosynthetic apparatus of Zea mays. Ecotox Environ Safe 73:982–986CrossRefGoogle Scholar
  32. European commission (EC) (2005) The European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off J L 23:0003–0016Google Scholar
  33. Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003CrossRefGoogle Scholar
  34. Fahimirad S, Hatami M (2017) Heavy metal-mediated changes in growth and phytochemicals of edible and medicinal plants. In: Ghorbanpourm M, Varma A (eds) Medicinal plants and environmental challenges, 1st edn. Springer International Publishing AG, Germany, pp 259–277Google Scholar
  35. Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotox Environ Safe 145:90–102CrossRefGoogle Scholar
  36. Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583:352–368CrossRefGoogle Scholar
  37. Fernández V, Brown PH (2013) From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Fron Plant Sci 7:1–5Google Scholar
  38. Forte J, Mutiti S (2017) Phytoremediation Potential of Helianthus annuus L. and Hydrangea paniculata Siebold. in Copper and Lead-Contaminated Soil. Water Air Soil Pollut 228:–77Google Scholar
  39. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRefGoogle Scholar
  40. Gawel JE, Trick CG, Morel FM (2001) Phytochelatins are bioindicators of atmospheric metal exposure via direct foliar uptake in trees near Sudbury, Ontario. Canada Environmental Science & Technology 35:2108–2113CrossRefGoogle Scholar
  41. Ghorbanpour M, Asgari Lajayer H, Hadian J (2016) Influence of copper and zinc on growth, metal accumulation and chemical composition of essential oils in sweet basil (Ocimum basilicum L.). J Med Plant 3:132–144Google Scholar
  42. Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445CrossRefGoogle Scholar
  43. Gjorgieva D, Kadifkova-Panovska T, Bačeva K, Stafilov T (2011) Assessment of heavy metal pollution in Republic of Macedonia using a plant assay. Arch Environ Contam Toxicol 60:233–240CrossRefGoogle Scholar
  44. González-Chávez MDCA, Carrillo-González R (2013) Tolerance of Chrysantemum maximum to heavy metals: the potential for its use in the revegetation of tailings heaps. J Environ Sci 25:367–375CrossRefGoogle Scholar
  45. Goswami S, Das S (2016) Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotox Environ Safe 126:211–218CrossRefGoogle Scholar
  46. Gratani L, Crescente MF, Varone L (2008) Long-term monitoring of metal pollution by urban trees. Atmos Environ 42:8273–8277CrossRefGoogle Scholar
  47. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  48. Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. Environ Sci Technol 47:10115–10116Google Scholar
  49. Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563CrossRefGoogle Scholar
  50. Han Y, Chen G, Chen Y, Shen Z (2015) Cadmium toxicity and alleviating effects of exogenous salicylic acid in Iris hexagona. Bull Environ Contam Toxicol 95:796–802CrossRefGoogle Scholar
  51. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146CrossRefGoogle Scholar
  52. Hojati M, Modarres-Sanavy SAM, Enferadi ST, Majdi M, Ghanati F, Farzadfar S, Pazoki A (2017) Cadmium and copper induced changes in growth, oxidative metabolism and terpenoids of Tanacetum parthenium. Environ Sci Pollut Res 24(2017):12261–12272CrossRefGoogle Scholar
  53. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis L. development. Appl Soil Ecol 101:57–63CrossRefGoogle Scholar
  54. Huguet S, Bert V, Laboudigue A, Barthès V, Isaure MP, Llorens I, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65CrossRefGoogle Scholar
  55. Ignatius A, Arunbabu V, Neethu J, Ramasamy E (2014) Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ Sci Pollut Res 21:13007–13016CrossRefGoogle Scholar
  56. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322CrossRefGoogle Scholar
  57. Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9:3689–3698Google Scholar
  58. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29CrossRefGoogle Scholar
  59. Kariman K, Barker SJ, Jost R, Finnegan PM, Tibbett M (2014) A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytol 201:1413–1422CrossRefGoogle Scholar
  60. Kozlov M, Haukioja E, Bakhtiarov A, Stroganov D, Zimina S (2000) Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environ Pollut 107:413–420CrossRefGoogle Scholar
  61. Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105CrossRefGoogle Scholar
  62. Kumar A, Prasad M, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89:1056–1065CrossRefGoogle Scholar
  63. Kumar V, Khare T, Arya S, Shriram V, Wani SH (2017) Effects of toxic gases, ozone, carbon dioxide, and wastes on plant secondary metabolism. In: Ghorbanpourm M, Varma A (eds) Medicinal plants and environmental challenges, 1st edn. Springer International Publishing AG, Germany, pp 259–277Google Scholar
  64. Lal K, Minhas P, Chaturvedi R, Yadav R (2008) Extraction of cadmium and tolerance of three annual cut flowers on Cd-contaminated soils. Bioresour Technol 99:1006–1011CrossRefGoogle Scholar
  65. Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems–a review. Mitig Adapt Strateg Glob Chang 11:395–419CrossRefGoogle Scholar
  66. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  67. Liang B, Lehmann J, Sohi SP, Thies JE, Neill BO, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213CrossRefGoogle Scholar
  68. Liu JN, Zhou QX, Sun T, Ma LQ, Wang S (2008a) Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. J Hazard Mater 151:261–267CrossRefGoogle Scholar
  69. Liu JN, Zhou QX, Sun T, Ma LQ, Wang S (2008b) Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull Environ Contam Toxicol 80:260–265CrossRefGoogle Scholar
  70. Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J Hazard Mater 169:170–175CrossRefGoogle Scholar
  71. Liu J, Zhou Q, Wang S (2010) Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int J Phytoremed 12:503–515CrossRefGoogle Scholar
  72. Liu Z, Gu C, Chen F, Yang D, Wu K, Chen S, Zhang Z (2012) Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl Biochem Biotechnol 166(3):722–734CrossRefGoogle Scholar
  73. Liu L, Guan D, Peart M, Wang G, Zhang H, Li Z (2013) The dust retention capacities of urban vegetation—a case study of Guangzhou, South China. Environ Sci Pollut Res 20:6601–6610CrossRefGoogle Scholar
  74. Liu J, Xin X, Zhou Q (2017) Phytoremediation of contaminated soils using ornamental plants. Environ Rev 26(1):43–54CrossRefGoogle Scholar
  75. Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156:2141–2154CrossRefGoogle Scholar
  76. Macci C, Peruzzi E, Doni S, Iannelli R, Masciandaro G (2015) Ornamental plants for micropollutant removal in wetland systems. Environ Sci Pollut Res 22:2406–2415CrossRefGoogle Scholar
  77. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotox Environ Safe 126:111–121CrossRefGoogle Scholar
  78. Maleki M, Ghorbanpour M, Kariman K (2017) Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene 11:247–254CrossRefGoogle Scholar
  79. Mani D, Kumar C, Patel N, Sivakumar D (2015) Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. Int J Environ Sci Technol 12:1211–1222CrossRefGoogle Scholar
  80. Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya M (2017) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32CrossRefGoogle Scholar
  81. Meier S, Borie F, Curaqueo G, Bolan N, Cornejo P (2012) Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels. Appl Soil Ecol 61:280–287CrossRefGoogle Scholar
  82. Miao Q, Yan J (2013) Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. Journal of Material Cycles and Waste Management 15:98–105CrossRefGoogle Scholar
  83. Nakbanpote W, Meesungnoen O, Prasad M (2016) Potential of ornamental plants for phytoremediation of heavy metals and income generation. In: Bioremediation and Bioeconomy. Elsevier, USA, pp 179–217CrossRefGoogle Scholar
  84. Oliva SR, Rautio P (2004) Could ornamental plants serve as passive biomonitors in urban areas? J Atmos Chem 49:137–148CrossRefGoogle Scholar
  85. Palowski B, Małkowska E, Kurtyka R, Szymanowska-Pułka J, Gucwa-Przepióra E, Małkowski Ł, Woźnica A, Małkowski E (2016) Bioaccumulation of heavy metals in selected organs of black locust (Robinia pseudoacacia L.) and their potential use as air contamination bioindicators. Pol J Environ Stud 25(5):2081–2092CrossRefGoogle Scholar
  86. Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136(3):3814–3823CrossRefGoogle Scholar
  87. Pardo T, Bernal P, Clemente R (2017) The use of olive mill waste to promote phytoremediation. In: Galanakis CM (ed) Olive mill waste, 1st edn. Academic Press, London, pp 183–204CrossRefGoogle Scholar
  88. Penna S, Nikalje GC (2018) Coping with metal toxicity-cues from halophytes. Front Plant Sci 9:777CrossRefGoogle Scholar
  89. Pérez-López R, Márquez-García B, Abreu MM, Nieto JM, Córdoba F (2014) Erica andevalensis and Erica australis growing in the same extreme environments: phytostabilization potential of mining areas. Geoderma 230:194–203CrossRefGoogle Scholar
  90. Pinter IF, Salomon MV, Berli F, Bottini R, Piccoli P (2017) Characterization of the As (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68CrossRefGoogle Scholar
  91. Pinton R, Varanini Z, Nannipieri P (2007) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca RatonCrossRefGoogle Scholar
  92. Prapagdee B, Wankumpha J (2017) Phytoremediation of cadmium-polluted soil by Chlorophytum laxum combined with chitosan-immobilized cadmium-resistant bacteria. Environ Sci Pollut Res 24(23):19249–19258CrossRefGoogle Scholar
  93. Prusty B, Mishra P, Azeez P (2005) Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotox Environ Safe 60:228–235CrossRefGoogle Scholar
  94. Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842CrossRefGoogle Scholar
  95. Rajkumar K, Sivakumar S, Senthilkumar P, Prabha D, Subbhuraam C, Song Y (2009) Effects of selected heavy metals (Pb, Cu, Ni, and Cd) in the aquatic medium on the restoration potential and accumulation in the stem cuttings of the terrestrial plant, Talinum triangulare Linn. Ecotoxicology 18:952–960CrossRefGoogle Scholar
  96. Ram S, Majumder S, Chaudhuri P, Chanda S, Santra S, Chakraborty A, Sudarshan M (2015) A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit Rev Environ Sci Technol 45:2489–2522CrossRefGoogle Scholar
  97. Rao M, Dubey P (1992) Occurrence of heavy metals in air and their accumulation by tropical plants growing around an industrial area. Sci Total Environ 126:1–16CrossRefGoogle Scholar
  98. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248CrossRefGoogle Scholar
  99. Ruiz O, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219CrossRefGoogle Scholar
  100. Rungruang N, Babel S, Parkpian P (2011) Screening of potential hyperaccumulator for cadmium from contaminated soil. Desalin Water Treat 32:19–26CrossRefGoogle Scholar
  101. Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2016) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721CrossRefGoogle Scholar
  102. Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427:253–262CrossRefGoogle Scholar
  103. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58CrossRefGoogle Scholar
  104. Simon E, Braun M, Vidic A, Bogyó D, Fábián I, Tóthmérész B (2011) Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut 159:1229–1233CrossRefGoogle Scholar
  105. Simoni M, Jaakkola M, Carrozzi L, Baldacci S, Di Pede F, Viegi G (2003) Indoor air pollution and respiratory health in the elderly. Eur Respir J 21:15–20CrossRefGoogle Scholar
  106. Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem 71:155–163CrossRefGoogle Scholar
  107. Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82CrossRefGoogle Scholar
  108. Speak A, Rothwell J, Lindley S, Smith C (2012) Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos Environ 61:283–293CrossRefGoogle Scholar
  109. Stomp A, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann N Y Acad Sci 721:481–491CrossRefGoogle Scholar
  110. Sun YB, Zhou QX, An J, Liu WT, Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150:106–112Google Scholar
  111. Tabrizi L, Mohammadi S, Delshad M, Motesharezadeh B (2015) Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. Int J Phytoremed 17:1244–1252CrossRefGoogle Scholar
  112. Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotox Environ Safe 126:138–146CrossRefGoogle Scholar
  113. Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948CrossRefGoogle Scholar
  114. Trigueros D, Mingorance M, Oliva SR (2012) Evaluation of the ability of Nerium oleander L. to remediate Pb-contaminated soils. J Geochem Explor 114:126–133CrossRefGoogle Scholar
  115. Turan D, Kocahakimoglu C, Kavcar P, Gaygısız H, Atatanir L, Turgut C, Sofuoglu SC (2011) The use of olive tree (Olea europaea L.) leaves as a bioindicator for environmental pollution in the Province of Aydın, Turkey. Environ Sci Pollut Res 18:355–364CrossRefGoogle Scholar
  116. Uhlig C, Junttila O (2001) Airborne heavy metal pollution and its effects on foliar elemental composition of Empetrum hermaphroditum and Vaccinium myrtillus in Sør-Varanger, northern Norway. Environ Pollut 114:461–469CrossRefGoogle Scholar
  117. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042CrossRefGoogle Scholar
  118. Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321Google Scholar
  119. Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJ (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171:544–553CrossRefGoogle Scholar
  120. Wan X, Lei M, Chen T (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563:796–802CrossRefGoogle Scholar
  121. Wang S, Liu J (2014) The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Environ Monit Assess 186:751–759CrossRefGoogle Scholar
  122. Wang Y, Yan A, Dai J, Wang N, Wu D (2012) Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum L.: a popular ornamental plant and potential Cd hyperaccumulator. Environ Monit Assess 184:929–937CrossRefGoogle Scholar
  123. Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600CrossRefGoogle Scholar
  124. Waranusantigul P, Kruatrachue M, Pokethitiyook P, Auesukaree C (2008) Evaluation of Pb phytoremediation potential in Buddleja asiatica Lour. and B. paniculata. Water Air Soil Pollut 193:79–90CrossRefGoogle Scholar
  125. Wei JL, Lai HY, Chen ZS (2012) Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula L. and Impatiens walleriana. Ecotox Environ Safe 84:173–178CrossRefGoogle Scholar
  126. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465(1-2):104–126CrossRefGoogle Scholar
  127. Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Smoleń S (2017) Comparative assessment of response to cadmium in heavy metal-tolerant shrubs cultured in vitro. Water Air Soil Pollut 228:304CrossRefGoogle Scholar
  128. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56CrossRefGoogle Scholar
  129. World Health Organization (WHO) (2007) Health risks of heavy metals from long-range transboundary air pollution. WHO, GeneveGoogle Scholar
  130. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazarous Material 174:1–8CrossRefGoogle Scholar
  131. Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168(2):167–173CrossRefGoogle Scholar
  132. Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health A 39:2925–2940CrossRefGoogle Scholar
  133. Yang X, Feng Y, He Z, Stoffella PJ (2005a) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353CrossRefGoogle Scholar
  134. Yang XE, Peng HY, Jiang LY (2005b) Phytoremediation of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. Int J Phytoremed 7:69–83CrossRefGoogle Scholar
  135. Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A (2008) Aromatic plant production on metal contaminated soils. Sci Total Environ 395:51–62CrossRefGoogle Scholar
  136. Zhong S, Shi J, Xu J (2010) Influence of iron plaque on accumulation of lead by yellow flag (Iris pseudacorus L.) grown in artificial Pb-contaminated soil. J Soils Sediments 10:964–970CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Behnam Asgari Lajayer
    • 1
  • Nader Khadem Moghadam
    • 2
  • Mohammad Reza Maghsoodi
    • 1
  • Mansour Ghorbanpour
    • 3
    Email author
  • Khalil Kariman
    • 4
  1. 1.Department of Soil Science, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Department of Soil Science, Faculty of AgricultureUniversity of ZanjanZanjanIran
  3. 3.Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
  4. 4.School of Agriculture and Environment M087The University of Western AustraliaCrawleyAustralia

Personalised recommendations