Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 9, pp 9055–9064 | Cite as

Genotoxic assessment of selected native plants to deferentially exposed urban ecosystems

  • Andrea PogányovaEmail author
  • Karol Mičieta
  • Jozef Dušička
Research Article
  • 69 Downloads

Abstract

The aim of this study is to provide an analysis of the impact of ecogenotoxicity on native flora abortivity in various urban areas. In which, there was an analysis of 5 groupings of locations with a differing environmental load intensity within the city of Bratislava (Slovakia) over a 2-year period. Our results show varying data depending on the proximity of each site relating to a direct source of pollution and the potential impact of localized wind currents on the distribution of pollutants in the urban environment. The highest value of pollen abortivity in the city was observed in a group of locations exposed to heavy traffic pollution loads. Abortivity of native flora near heavy traffic road areas correlated with the imissions data measured in the same area. Wind-exposed uncovered sites also experienced higher values of native flora abortivity. These results confirmed the varying intensity of genotoxic impact in differing localities and also suggest that xenobiotic effects on flora can occur remotely from the original source of pollution.

Keywords

Pollen abortivity Pollution Ecogenotoxicity Native flora Phytoindication 

Notes

Acknowledgments

The authors gratefully acknowledge the statistics evaluation support of Veronika Hulejová Sládkovičová.

Funding information

This study was financially supported by VEGA 1/0885/16 and ITMS 26210120006.

References

  1. Baldantoni D, De Nicola F, Alfani A (2014) Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant. Atmos Pollut Res 5:262–269CrossRefGoogle Scholar
  2. Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A (2007) Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ Pollut 149:239–245CrossRefGoogle Scholar
  3. Carneiro MFH, Ribeiro FQ, Fernandes-Filho FN, Lobo DJA, Barbosa JRF, Rhoden CR, Mauad T, Saldiva PHN, Carvalho-Oliveira R (2011) Pollen abortion rates, nitrogen dioxide by passive diffusive tubes and bioaccumulation in tree barks are effective in the characterization of air pollution. Environ Exp Bot 72:272–277CrossRefGoogle Scholar
  4. Chen X, Chia X, Zhao Y, Zhang P (2010) Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater 181:640–646CrossRefGoogle Scholar
  5. Chropeňová M, Klemmová Gregušková E, Karásková P, Pribylová P, Kukučka P, Baráková D, Cupr P (2016) Pine needles and pollen grains of Pinus mugo Turra – a biomonitoring tool in high mountain habitats identifying environmental contamination. Ecol Indic 66:132–142CrossRefGoogle Scholar
  6. Esfahani A, Amini H, Samadi N, Hoodaji M, Shirvani M, Porsakhi K (2013) Assesment of air pollution tolerance index of higher plants suitable for green belt development in east of Esfahan city, Iran. J Ornam Hortic Plants 3(2):87–94Google Scholar
  7. Fan M, Chaub CK, Chan EHW, Jia J (2017) A decision support tool for evaluating the air quality and wind comfort induced by different opening configurations for buildings in canyons. Sci Total Environ 574:569–582CrossRefGoogle Scholar
  8. Feketeová Z, Hulejová Sládkovičová V, Mangová B, Pogányová A, Šimkovic I, Krumpál M (2016) Biological properties of extremely acidic cyanide-laced mining waste. Ecotoxicology 25(1):2002–2012CrossRefGoogle Scholar
  9. Gregušková E, Mičieta K (2013) Phytoindication of ecogenotoxic effects of vehicle emissions using pollen abortion test with native flora. Pol J Environ Stud 22(4):1069–1076Google Scholar
  10. Honour SL, Bell JNB, Ashenden TW, Cape JN, Power SA (2009) Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics. Environ Pollut 157(4):1279–1286CrossRefGoogle Scholar
  11. Huang YT, Rappold AG, Graff DW, Ghio AJ, Devlin RB (2012) Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans. Inhalation Toxicology: International Forum for. Respir Res 24(12):790–797Google Scholar
  12. Knasmüller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48CrossRefGoogle Scholar
  13. Kordjum EL, Sidorenko PG (1997) Results of cytological monitoring of the flowering plant species growing up at the zone of radioactive pollution after Chernobyl APP breakdown. Tsitol Genet 31:39–46 (in Russian)Google Scholar
  14. Kucbel M, Svedova B, Raclavska H, Raclavsky J, Juchelkova D (2017) The influence of the inverse character of the weather on concentrations of black carbon. IOP Conf Ser Earth Environ Sci 92:012033 http://iopscience.iop.org/article/10.1088/1755-1315/92/1/012033/pdf. Accessed 12 December 2017 CrossRefGoogle Scholar
  15. Li L, Yan D, Xu S, Huang M, Wang X, Xie S (2017) Characteristics and source distribution of air pollution in winter in Qingdao, eastern China. Environ Pollut 224:44–53Google Scholar
  16. Liu H, Weisman D, Ye Y, Cui B, Huang Y, Colón-Carmona A, Wang Z (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposureis rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382CrossRefGoogle Scholar
  17. Ma TH (1994) Application of quick and simple plant bioassays to assess the genotoxicity of environmental pollutants - detection of potential health hazards of air, water and soil contaminants. In: Degen GH, Seiler JP, Bentley P (eds) Toxicology in transition. Archives of toxicology (Supplement), vol 17. Springer, Berlin, Heidelberg, pp 420–433CrossRefGoogle Scholar
  18. Mauderly JL, Samet JM (2009) Is there evidence for synergy among air pollutants in causing health effects? Environ Health Perspect 117(1):1–6CrossRefGoogle Scholar
  19. Mičieta K, Kunová K (2000) Phytoindication of genotoxic deterioration of polluted environment. Biologia 55(8):75–79Google Scholar
  20. Mičieta K, Murín G (1996) Microspore analysis for genotoxicity of a polluted environment. Environ Exp Bot 36(1):21–27CrossRefGoogle Scholar
  21. Mičieta K, Murín G (1997) Wild plant species in practical use for bioindication of polluted environment. Ecology 16:193–202Google Scholar
  22. Mičieta K, Brutovská E, Sámelová A, Dušička J (2012) Comparison of persistent and current ecogenotoxicity in the vicinity of industrial complexes using bioindicators of local flora. Acta Envir. Univ. Comenianae (Bratislava) 20(1):44–48 (In Slovak)Google Scholar
  23. Mišík M, Solenská M, Mičieta K, Mišíková K, Knasmüller S (2006) In situ monitoring of clastogenicity of ambient air in Bratislava, Slovakia using the Tradescantia micronucleus assay and pollen abortion assays. Mutat Res-Gen Tox En 605(1–2):1–6CrossRefGoogle Scholar
  24. Mišík M, Mičieta K, Solenská M, Mišíková K, Pisarčíková H, Knasmüller S (2007) In situ biomonitoring of the genotoxic effects of mixed industrial emissions using Tradescantia micronucleus and pollen abortion tests with wild life plants: demonstration of the efficacy of emission controls in an eastern European city. Environ Pollut 145:459–466CrossRefGoogle Scholar
  25. Mukherjee A, Agrawal M (2016) Pollution response score of tree species in relation to ambient air quality in an urban area. B Environ Contam Tox 96(2):197–202CrossRefGoogle Scholar
  26. Murín G (1995) Basic criteria for selection of plant bioindicators from regional flora for monitoring of an environmental pollution. Biologia 50:67–40Google Scholar
  27. Murín G, Mičieta K (2009) Response of plant species to the radioactive contaminated soil around nuclear power plant Jaslovské Bohunice, Slovakia. In: Steinberg RV (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers Inc., New York, pp 433–448Google Scholar
  28. Polčák N, Šťastný P (2011) Topography influence on wind condition of Bratislava. In: Středová H, Rožnovský J, Litschmann T (eds) Microclimate and mesoclima of landscape structures and anthropogenic environments, Skalní mlýn, 2. – 4.2. 2011. Czech Hydrometeorological Institute, Prague, p 38 (in Slovak)Google Scholar
  29. Schwarz M, Lalík V, Vanek M (2009) Monitoring the dependence of ozone concentrations on the other pollutants. Meteorological Journal 12(1–2):103–107 (in Slovak)Google Scholar
  30. Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley JP, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra JP (2015) A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity. Sci World J 2015:29CrossRefGoogle Scholar
  31. Silveira Fleck A, Vieira M, Amantéa SL, Rhoden CR (2014) A comparison of the human buccal cell assay and the pollen abortion assay in assessing genotoxicity in urban – rural gradient. Int J Environ Res Public Health 11:8825–8838CrossRefGoogle Scholar
  32. Silveira Fleck A, Bianchini Moresco M, Ramos Rhoden C (2016) Assessing the genotoxicity of traffic-related air pollutants by means of plant bionomonitoring in cities of a Brazilian metropolitan area crossed by a major highway. Atmos Pollut Res 7(3):488–493CrossRefGoogle Scholar
  33. Simon L, Martin HW, Adriano DC (1996) Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water Air Soil Pollut 91(3–4):351–362CrossRefGoogle Scholar
  34. Simon E, Vidic A, Braun M, Fábián I, Tóthmérész B (2012) Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environ Sci Pollut Res 20:917–924CrossRefGoogle Scholar
  35. Solenská M, Mičieta K, Mišík M (2006) Plant bioassay for in situ monitoring of air near an industrial area and a municipal solid waste - Žilina (Slovakia). Environ Monit Assess 115:499–508CrossRefGoogle Scholar
  36. Statgraphics (1997) Statgraphics plus for Windows,Version 3.0. Manugistics, Inc., Rockville, MarylandGoogle Scholar
  37. Uhl M, Plewa MJ, Majer BJ, Knasmüller S (2003) Basic principles ofgenetic toxicology with an emphasis on plant bioassays. In: Maluszynska J, Plewa M (eds) Bioassays in plant cells for improvement of ecosystem and human health. Wydawnictvo Uniwersytetu Ślaskiego, Katowice, p 150Google Scholar
  38. Wang L, Liu Z, Sun Y, Ji D, Wang Y (2015) Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmos Res 157:37–48Google Scholar
  39. White PA (2002) The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutat Res-Gen Tox En 515(1–2):85–98CrossRefGoogle Scholar
  40. Zarinkamar F, Albooghobaish N (2011) Effect of lead toxicity on pollen grains in Matricaria Chamomilla. In: International Conference on Bioscience, Biochemistry and Bioinformatics. IACSIT Press, Singapore, pp 292–295Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Andrea Pogányova
    • 1
    Email author
  • Karol Mičieta
    • 2
  • Jozef Dušička
    • 2
  1. 1.Institute of High Mountain BiologyUniversity of ŽilinaTatranská JavorinaSlovakia
  2. 2.Department of Botany, Faculty of Natural SciencesComenius University in BratislavaBratislava 1Slovakia

Personalised recommendations