Environmental Science and Pollution Research

, Volume 26, Issue 8, pp 8169–8181 | Cite as

Presence of bacteroidales as a predicator of human enteric viruses in Haihe River of Tianjin City, China

  • Shuqing Zhou
  • Dong Yang
  • Qunying Xu
  • Zhongwei Yang
  • Min Jin
  • Jing Yin
  • Huaran Wang
  • Kun Zhou
  • Lianqi Wang
  • Junwen LiEmail author
  • Zhiqiang ShenEmail author
Research Article


Traditional microbe indicators including total bacteria, total coliforms, fecal coliforms, Escherichia coli, enterococci, and F+ coliphage are all frequently used to characterize the microbial contamination state of water bodies for their correlation with pathogenic bacteria. However, these indicators have a poor relationship with viruses, which pose serious threat to economic and human health. Alternative indicators such as bacteroidales may be suitable complementary alternatives to traditional microbe indicators and are being increasingly reported. In the present study, water was analyzed for selected sites along Haihe River in Tianjin for traditional indicators, an alternative indicator (bacteroidales), pathogenic bacteria (Salmonella, Escherichia coli (E. coli) O157:H7, and Vibrio parahaemolyticus), viruses (enteric adenovirus, norovirus, enterovirus, poliovirus and rotavirus), and physicochemical parameters. Results indicated that traditional microbe indicators detected in this study showed good correlation with pathogenic bacteria, and the alternative indicator (bacteroidales) had a surprisingly good relationship with viral presence. We propose that bacteroidales might be a suitable complementary indicator for viral contamination in water bodies.


Microbe indicators Bacteroidales Physicochemical parameters Enteric viruses Environmental health Haihe River 


Funding information

This study was financially supported by the National Key R&D Plan of China (No. 2017YFC1601200).

Supplementary material

11356_2019_4217_MOESM1_ESM.docx (44 kb)
ESM 1 (DOCX 44.0 kb)


  1. Amin R, Ali SS, Anwar Z, Khattak JZK (2012) Microbial analysis of drinking water and water distribution system in new urban Peshawar. Curr Res J Biol Sci 4:731–737Google Scholar
  2. Anderson KL, Whitlock JE, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71(6):3041–3048. CrossRefGoogle Scholar
  3. Bae S, Wuertz S (2012) Survival of host-associated bacteroidales cells and their relationship with Enterococcusspp., Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and adenovirusin freshwater microcosms as measured by propidium monoazide-quantitative PCR. Appl Environ Microbiol 78(4):922–932. CrossRefGoogle Scholar
  4. Baggi F, Demarta A, Peduzzi R (2001) Persistence of viral pathogens and bacteriophages during sewage treatment: lack of correlation with indicator bacteria. Res Microbiol 152(8):743–751CrossRefGoogle Scholar
  5. Bambic DG, Kildare-Hann BJ, Rajal VB, Sturm BS, Minton CB, Schriewer A, Wuertz S (2015) Spatial and hydrologic variation of Bacteroidales, adenovirus and enterovirus in a semi-arid, wastewater effluent-impacted watershed. Water Res 75:83–94CrossRefGoogle Scholar
  6. Bernhard AE, Field KG (2000) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66(10):4571–4574CrossRefGoogle Scholar
  7. Boehm AB, Yamahara KM, Love DC, Peterson BM, McNeill K, Nelson KL (2009a) Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ Sci Technol 43(21):8046–8052CrossRefGoogle Scholar
  8. Boehm AB, Griffith J, McGee C, Edge TA, Solo-Gabriele HM, Whitman R, Cao Y, Getrich M, Jay JA, Ferguson D, Goodwin KD, Lee CM, Madison M, Weisberg SB (2009b) Faecal indicator bacteria enumeration in beach sand: a comparison study of extraction methods in medium to coarse sands. J Appl Microbiol 107(5):1740–1750. CrossRefGoogle Scholar
  9. Bonadonna L, Briancesco R, Ottaviani M, Veschetti E (2002) Occurrence of Cryptosporidium oocysts in sewage effluents and correlation with microbial, chemical and physical water variables. Environ Monit Assess 75(3):241–252CrossRefGoogle Scholar
  10. Borchardt MA, Bertz PD, Spencer SK, Battigelli DA (2003) Incidence of enteric viruses in groundwater from household wells in Wisconsin. Appl Environ Microbiol 69(2):1172–1180CrossRefGoogle Scholar
  11. Bosch A (1998) Human enteric viruses in the water environment: a minireview. Int Microbiol 1:191–196Google Scholar
  12. Bosch A, Lucena F, Diez JM, Gajardo R, Blasi M, Jofre J (1991) Waterborne viruses associated with hepatitis outbreak. J Am Water Works Assoc 83:80–83CrossRefGoogle Scholar
  13. Byappanahalli MN, Shively DA, Nevers MB, Sadowsky MJ, Whitman RL (2003) Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiol Ecol 46(2):203–211. CrossRefGoogle Scholar
  14. Chen S, Li X, Wang Y, Zeng J, Ye C, Li X, Guo L, Zhang S, Yu X (2018) Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res 142:279–288. CrossRefGoogle Scholar
  15. Cliver DO (2010) Early days of food and environmental virology. Food Environ Virol 2(1):1–23. CrossRefGoogle Scholar
  16. De Giglio O, Caggiano G, Bagordo F, Barbuti G, Brigida S, Lugoli F, Grassi T, La Rosa G, Lucentini L, Uricchio VF, De Donno A, Montagna MT (2017) Enteric viruses and fecal Bacteria indicators to assess groundwater quality and suitability for irrigation. Int J Environ Res Public Health 14(6):E558. CrossRefGoogle Scholar
  17. Espinosa AC, Mazari-Hiriart M, Espinosa R, Maruri-Avidal L, Méndez E, Arias CF (2008) Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Res 42(10–11):2618–2628. CrossRefGoogle Scholar
  18. Espinosa AC, Arias CF, Sánchez-Colón S, Mazari-Hiriart M (2009) Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system. Environ Health 8:49. CrossRefGoogle Scholar
  19. Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538CrossRefGoogle Scholar
  20. Gibson KE, Opryszko MC, Schissler JT, Guo Y, Schwab KJ (2011) Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana. Am J Trop Med Hyg 84(1):20–29. CrossRefGoogle Scholar
  21. González-Escalona N, Brown EW, Zhang G (2012) Development and evaluation of a multiplex real-time PCR (qPCR) assay targeting ttrRSBCA locus and invA gene for accurate detection of Salmonella spp. in fresh produce and eggs. Food Res Int 48:202–208. CrossRefGoogle Scholar
  22. Griffith JF, Cao YP, McGee CD, Weisberg SB (2009) Evaluation of rapid methods and novel indicators for assessing microbiological beach water quality. Water Res 43:4900–4907. CrossRefGoogle Scholar
  23. Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB (2005) Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl Environ Microbiol 71(6):3163–3170. CrossRefGoogle Scholar
  24. Hopkins RS, Gaspard GB, Williams FP Jr, Karlin RJ, Cukor G, Blacklow NR (1984) A community waterborne gastroenteritis outbreak: evidence for rotavirus as the agent. Am J Public Health 74(3):263–265CrossRefGoogle Scholar
  25. Jin M, Guo X, Wang XW, Yang D, Shen ZQ, Qiu ZG, Chen ZL, Li JW (2014) Development of a novel filter cartridge system with electropositive granule media to concentrate viruses from large volumes of natural surface water. Environ Sci Technol 48(12):6947–6956. CrossRefGoogle Scholar
  26. Johnson JY, Thomas JE, Graham TA, Townshend I, Byrne J, Selinger LB, Gannon VP (2003) Prevalence of Escherichia coli O157:H7 and Salmonella spp. in surface waters of southern Alberta and its relation to manure sources. Can J Microbiol 49(5):326–335. CrossRefGoogle Scholar
  27. Jung JH, Yoo CH, Koo ES, Kim HM, Na Y, Jheong WH, Jeong YS (2011) Occurrence of norovirus and other enteric viruses in untreated groundwaters of Korea. J Water Health 9(3):544–555. CrossRefGoogle Scholar
  28. Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41(16):3701–3715. CrossRefGoogle Scholar
  29. Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224. CrossRefGoogle Scholar
  30. Leclerc H, Mossel DA, Edberg SC, Struijk CB (2001) Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234. CrossRefGoogle Scholar
  31. Lee DY, Weir SC, Lee H, Trevors JT (2010) Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers. Appl Microbiol Biotechnol 88(6):1373–1383. CrossRefGoogle Scholar
  32. Lemarchand K, Lebaron P (2003) Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators. FEMS Microbiol Lett 218(1):203–209CrossRefGoogle Scholar
  33. Li JW, Wang XW, Rui QY, Song N, Zhang FG, Ou YC, Chao FH (1998) A new and simple method for concentration of enteric viruses from water. J Virol Methods 74(1):99–108. CrossRefGoogle Scholar
  34. Liu C, Wang ZY, He Y (2007) Evaluation of water and sediment qualities at river mouths in the Haihe river system. IJSR 22(4):318–326Google Scholar
  35. Liu R, Cheng KH, Wong K, Cheng SC, Lau SC (2015) Differential utility of the Bacteroidales DNA and RNA markers in the tiered approach for microbial source tracking in subtropical seawater. Appl Microbiol Biotechnol 99(13):5669–5681. CrossRefGoogle Scholar
  36. Lodder WJ, Vinje J, van de Heide R, Husman AMD, Leenen EJTM, Koopmans MPG (1999) Molecular detection of Norwalk-like caliciviruses in sewage. Appl Environ Microbiol 65:5624–5627Google Scholar
  37. Lund V (1996) Evaluation of E. coli as an indicator for the presence of Campylobacter jejuni and Yersinia enterocolitica in chlorinated and untreated oligotrophic lake water. Water Res 30:1528–1534. CrossRefGoogle Scholar
  38. Marti R, Gannon VP, Jokinen C, Lanthier M, Lapen DR, Neumann NF, Ruecker NJ, Scott A, Wilkes G, Zhang Y, Topp E (2013) Quantitative multi-year elucidation of fecal sources of waterborne pathogen contamination in the south Nation River basin using Bacteroidales microbial source tracking markers. Water Res 47(7):2315–2324. CrossRefGoogle Scholar
  39. Mattioli MC, Pickering AJ, Gilsdorf RJ, Davis J, Boehm AB (2013) Hands and water as vectors of diarrheal pathogens in Bagamoyo, Tanzania. Environ Sci Technol 47(1):355–363. CrossRefGoogle Scholar
  40. McFeters GA, Bissonnette GK, Jezeski JJ, Thomson CA, Stuart DG (1974) Comparative survival of indicator bacteria and enteric pathogens in well water. Appl Microbiol 27(5):823–829Google Scholar
  41. Ministry of Environmental Protection (2013) Report on the state of the environment in China. Ministry of Ecology and Environmental of the People’s republic of China.
  42. Ngwa GA, Schop R, Weir S, León-Velarde CG, Odumeru JA (2013) Detection and enumeration of E. coli O157:H7 in water samples by culture and molecular methods. J Microbiol Methods 92(2):164–172. CrossRefGoogle Scholar
  43. Noble RT, Fuhrman JA (2001) Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: low correlation to bacterial indicator levels. Hydrobiologia 460(1):175–184. CrossRefGoogle Scholar
  44. Nordstrom JL, Vickery MC, Blackstone GM, Murray SL, DePaola A (2007) Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol 73(18):5840–5847. CrossRefGoogle Scholar
  45. Okabe S, Okayama N, Savichtcheva O, Ito T (2007) Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74(4):890–901. CrossRefGoogle Scholar
  46. Parashar UD, Burton A, Lanata C, Boschi-Pinto C, Shibuya K, Steele D, Birmingham M, Glass RI (2009) Global mortality associated with rotavirus disease among children in 2004. J Infect Dis 200(Suppl 1):S9–S15. CrossRefGoogle Scholar
  47. Passerat J, Ouattara NK, Mouchel JM, Rocher V, Servais P (2011) Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res 45(2):893–903. CrossRefGoogle Scholar
  48. Pickering AJ, Julian TR, Mamuya S, Boehm AB, Davis J (2011) Bacterial hand contamination among Tanzanian mothers varies temporally and following household activities. Tropical Med Int Health 16(2):233–239. CrossRefGoogle Scholar
  49. Pina S, Puig M, Lucena F, Jofre J, Girones R (1998) Viral pollution in the environment and in shellfish: human adenovirus detection by PCR as an index of human viruses. Appl Environ Microbiol 64(9):3376–3382Google Scholar
  50. Reischer GH, Kasper DC, Steinborn R, Farnleitner AH, Mach RL (2007) A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Lett Appl Microbiol 44(4):351–356. CrossRefGoogle Scholar
  51. Reynolds KA, Mena KD, Gerba CP (2008) Risk of waterborne illness via drinking water in the United States. Rev Environ Contam Toxicol 192:117–158CrossRefGoogle Scholar
  52. Schriewer A, Miller WA, Byrne BA, Miller MA, Oates S, Conrad PA, Hardin D, Yang HH, Chouicha N, Melli A, Jessup D, Dominik C, Wuertz S (2010) Presence of Bacteroidales as a predictor of pathogens in surface waters of the Central California coast. Appl Environ Microbiol 76(17):5802–5814. CrossRefGoogle Scholar
  53. Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ Microbiol 7(2):249–259. CrossRefGoogle Scholar
  54. Shanks OC, White K, Kelty CA, Sivaganesan M, Blannon J, Meckes M, Varma M, Haugland RA (2010) Performance of PCR-based assays targeting Bacteroidales genetic markers of human fecal pollution in sewage and fecal samples. Environ Sci Technol 44(16):6281–6288. CrossRefGoogle Scholar
  55. Skraber S, Gassiolloud B, Schwartzbrod L, Gantzer C (2004) Survival of infectious Poliovirus-1 in river water compared to the persistence of somatic coliphages, thermotolerant coliforms and Poliovirus-1 genome. Water Res 38(12):2927–2933. CrossRefGoogle Scholar
  56. Tallon P, Magajna B, Lofranco C, Leung KT (2005) Microbial indicators of faecal contamination in water: a current perspective. Water Air Soil Pollut 166:139–166. CrossRefGoogle Scholar
  57. Tianjin Environmental Protection Bureau (2001) Environmental quality report of Tianjin in 1996 -2000 Tianjin, ChinaGoogle Scholar
  58. UNISEF and WHO (2012) Progress on drinking water and sanitation update 2012. Retrieved from; JMPreport2012.pdf
  59. United States Environmental Protection Agency (2012) Water Quality Standards Handbook.
  60. US Environmental Protection Agency Office of Water (4303T) 120 (2002) Method 1600: Enterococci in Water by Membrane Filtration Using Membrane -Enterococcus Indoxyl-beta-D-Glucoside Agar (mEI). US Environmental Protection Agency. Dockey=P10099DH.txt
  61. Viau EJ, Goodwin KD, Yamahara KM, Layton BA, Sassoubre LM, Burns SL, Tong HI, Wong SH, Lu Y, Boehm AB (2011) Bacterial pathogens in Hawaiian coastal streams—associations with fecal indicators, land cover, and water quality. Water Res 45(11):3279–3290. CrossRefGoogle Scholar
  62. Walters SP, Gannon VP, Field KG (2007) Detection of Bacteroidales fecal indicators and the zoonotic pathogens E. Coli O157:H7, salmonella, and campylobacter in river water. Environ Sci Technol 41(6):1856–1862. CrossRefGoogle Scholar
  63. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuqing Zhou
    • 1
  • Dong Yang
    • 1
  • Qunying Xu
    • 2
  • Zhongwei Yang
    • 1
  • Min Jin
    • 1
  • Jing Yin
    • 1
  • Huaran Wang
    • 1
  • Kun Zhou
    • 1
    • 2
  • Lianqi Wang
    • 1
  • Junwen Li
    • 1
    Email author
  • Zhiqiang Shen
    • 1
    Email author
  1. 1.Tianjin Institute of Environmental and Operational MedicineKey Laboratory of Risk Assessment and Control for Environment and Food SafetyTianjinChina
  2. 2.School of Public HealthNanchang UniversityJiangxiChina

Personalised recommendations