Advertisement

Characteristics and source apportionment of PM2.5 in Jiaxing, China

  • Zhipeng Zhao
  • Sheng Lv
  • Yihua Zhang
  • Qianbiao Zhao
  • Lin Shen
  • Shi Xu
  • Jianqiang Yu
  • Jingwen Hou
  • Chengyu JinEmail author
Research Article
  • 75 Downloads

Abstract

Herein we investigated the morphology, chemical characteristics, and source apportionment of fine particulate matter (PM2.5) samples collected from five sites in Jiaxing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that soot aggregates and coal-fired fly ash were generally the most abundant components in the samples. All the samples were analyzed gravimetrically for mass concentrations and their various compositions were determined. Our results revealed that the PM2.5 concentrations in the samples were in the following order: winter > spring > autumn > summer. The PM2.5 concentrations in winter and spring were higher than those in autumn and summer, except for inorganic elements. Carbonaceous species and water-soluble inorganic ions were the most abundant components in the samples, accounting for 26.17–50.44% and 34.27–49.6%, respectively. The high secondary organic carbon/organic carbon ratio indicated that secondary organic pollution in Jiaxing was severe. The average ratios of NO3/SO42−, ranging from 1.01 to 1.25 at the five sites, indicated that mobile pollution sources contributed more to the formation of PM2.5 than stationary sources. The BeP/(BeP + BaP) ratio (0.52–0.71) in samples reflected the influence of transportation from outside of Jiaxing. The positive matrix factorization (PMF) model identified eight main pollution sources: secondary nitrates (26.95%), secondary sulfates (15.49%), secondary organic aerosol (SOA) (19.64%), vehicle exhaust (15.67%), coal combustion (8.6%), fugitive dust (7.7%), ships and heavy oil (5.23%), biomass burning, and other sources (0.91%). Therefore, PM2.5 pollution in Jiaxing during the winter and spring seasons was more severe than that in the summer and autumn. Secondary aerosols were the most important source of PM2.5 pollution; therefore, focus should be placed on controlling gaseous precursors.

Keywords

PM2.5 Morphology Chemical characteristics Source apportionment 

Notes

Acknowledgments

This study was funded by the Municipal Environmental Protection Bureau of Jiaxing (JXSJ-2014-73), and Shanghai Natural Science Foundation of the Science and Technology Commission of Shanghai Municipal Government (No. 18ZR1418300).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

11356_2019_4205_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)

References

  1. Almeida SM, Pio CA, Freitas MC et al (2005) Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European coast. Atmos Environ 39:3127–3138.  https://doi.org/10.1016/j.atmosenv.2005.01.048 CrossRefGoogle Scholar
  2. Amato F, Hopke PK (2012) Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmos Environ 46:329–337.  https://doi.org/10.1016/j.atmosenv.2011.09.062 CrossRefGoogle Scholar
  3. Arimoto R, Duce RA, Savoie DL, Prospero JM, Talbot R, Cullen JD, Tomza U, Lewis NF, Ray BJ (1996) Relationships among aerosol constituents from Asia and the North Pacific during PEM-West a. J Geophys Res Atmos 101:2011–2023.  https://doi.org/10.1029/95JD01071 CrossRefGoogle Scholar
  4. Bao Z, Feng YC, Jiao L et al (2010) Characterization and source apportionment of PM2. 5 and PM10 in Hangzhou. Environ Monit China 26(2):44–48Google Scholar
  5. Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038.  https://doi.org/10.1016/j.atmosenv.2004.02.042 CrossRefGoogle Scholar
  6. Bidleman TF, Billings WN, Foreman WT (1986) Vapor-particle partitioning of semivolatile organic compounds: estimates from field collections. Environ Sci Technol 20:1038–1043.  https://doi.org/10.1021/es00152a013 CrossRefGoogle Scholar
  7. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Glob Biogeochem Cycles 21:1–16.  https://doi.org/10.1029/2006GB002840 CrossRefGoogle Scholar
  8. Buseck PR, Posfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci 96:3372–3379.  https://doi.org/10.1073/pnas.96.7.3372 CrossRefGoogle Scholar
  9. Cao JJ, Lee SC, Ho KF, Zou SC, Fung K, Li Y, Watson JG, Chow JC (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta region, China. Atmos Environ 38:4447–4456.  https://doi.org/10.1016/j.atmosenv.2004.05.016 CrossRefGoogle Scholar
  10. Cao JJ, Lee SC, Chow JC, Watson JG, Ho KF, Zhang RJ, Jin ZD, Shen ZX, Chen GC, Kang YM, Zou SC, Zhang LZ, Qi SH, Dai MH, Cheng Y, Hu K (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res Atmos 112:1–9.  https://doi.org/10.1029/2006JD008205 CrossRefGoogle Scholar
  11. Cao J, Zhu C, Tie X et al (2013) Characteristics and sources of carbonaceous aerosols from Shanghai, China. Atmos Chem Phys 13(2):803–817.  https://doi.org/10.5194/acp-13-803-2013 CrossRefGoogle Scholar
  12. Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781.  https://doi.org/10.1016/S1352-2310(98)00331-8 CrossRefGoogle Scholar
  13. Chan YC, Simpson RW, Mctainsh GH, Vowles PD, Cohen DD, Bailey GM (1999) Source apportionment of PM and PM aerosols in Brisbane ( Australia ) by receptor modelling. Atmos Environ 33:3251–3268CrossRefGoogle Scholar
  14. Cheng Y, He K, Bin DZY et al (2015) Humidity plays an important role in the PM2.5 pollution in Beijing. Environ Pollut 197:68–75.  https://doi.org/10.1016/j.envpol.2014.11.028 CrossRefGoogle Scholar
  15. Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ 30:2079–2112.  https://doi.org/10.1016/1352-2310(95)00402-5 CrossRefGoogle Scholar
  16. Chow JC, Watson JG, Chen LWA, Chang MCO, Robinson NF, Trimble D, Kohl S (2007) The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manage Assoc 57:1014–1023.  https://doi.org/10.3155/1047-3289.57.9.1014 CrossRefGoogle Scholar
  17. Chueinta W, Hopke PK, Paatero P (2000) Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos Environ 34:3319–3329.  https://doi.org/10.1016/S1352-2310(99)00433-1 CrossRefGoogle Scholar
  18. Duan FK, He KB, Ma YL et al (2006) Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001-2002. Sci Total Environ 355:264–275.  https://doi.org/10.1016/j.scitotenv.2005.03.001 CrossRefGoogle Scholar
  19. Dye AL, Rhead MM, Trier CJ (2000) The quantitative morphology of roadside and background urban aerosol in Plymouth, UK. Atmos Environ 34:3139–3148.  https://doi.org/10.1016/S1352-2310(99)00437-9 CrossRefGoogle Scholar
  20. Feng Y, Chen Y, Guo H, Zhi G, Xiong S, Li J, Sheng G, Fu J (2009) Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmos Res 92:434–442.  https://doi.org/10.1016/j.atmosres.2009.01.003 CrossRefGoogle Scholar
  21. Feng J, Hu J, Xu B, Hu X, Sun P, Han W, Gu Z, Yu X, Wu M (2015) Characteristics and seasonal variation of organic matter in PM 2.5 at a regional background site of the Yangtze River Delta region, China. Atmos Environ 123:288–297.  https://doi.org/10.1016/j.atmosenv.2015.08.019 CrossRefGoogle Scholar
  22. Fu X, Wang S, Zhao B, Xing J, Cheng Z, Liu H, Hao J (2013) Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmos Environ 70:39–50.  https://doi.org/10.1016/j.atmosenv.2012.12.034 CrossRefGoogle Scholar
  23. Geng H, Meng Z, Zhang Q (2006) In vitro responses of rat alveolar macrophages to particle suspensions and water-soluble components of dust storm PM2.5. Toxicol in Vitro 20:575–584.  https://doi.org/10.1016/j.tiv.2005.09.015 CrossRefGoogle Scholar
  24. Gibson MD, Haelssig J, Pierce JR, Parrington M, Franklin JE, Hopper JT, Li Z, Ward TJ (2015) A comparison of four receptor models used to quantify the boreal wildfire smoke contribution to surface PM2.5 in Halifax, Nova Scotia during the BORTAS-B experiment. Atmos Chem Phys 15:815–827.  https://doi.org/10.5194/acp-15-815-2015 CrossRefGoogle Scholar
  25. Han B, Kong S, Bai Z, du G, Bi T, Li X, Shi G, Hu Y (2010) Characterization of elemental species in PM2.5 samples collected in four cities of Northeast China. Water Air Soil Pollut 209:15–28.  https://doi.org/10.1007/s11270-009-0176-8 CrossRefGoogle Scholar
  26. Heo J-B, Hopke PK, Yi S-M (2009) Source apportionment of PM2.5 in Seoul, Korea. Atmos Chem Phys 9:4957–4971.  https://doi.org/10.5194/acp-9-4957-2009 CrossRefGoogle Scholar
  27. Ho KF, Engling G, Sai Hang Ho S, Huang R, Lai S, Cao J, Lee SC (2014) Seasonal variations of anhydrosugars in PM 2.5 in the Pearl River Delta region, China. Tellus Ser B Chem Phys Meteorol 66:22577.  https://doi.org/10.3402/tellusb.v66.22577 CrossRefGoogle Scholar
  28. Hou B, Zhuang G, Zhang R, Liu T, Guo Z, Chen Y (2011) The implication of carbonaceous aerosol to the formation of haze : revealed from the characteristics and sources of OC / EC over a mega-city in China. J Hazard Mater 190:529–536.  https://doi.org/10.1016/j.jhazmat.2011.03.072 CrossRefGoogle Scholar
  29. Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152.  https://doi.org/10.1016/j.atmosenv.2012.04.056 CrossRefGoogle Scholar
  30. Hu G, Zhang Y, Sun J, Zhang L, Shen X, Lin W, Yang Y (2014) Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos Res 145–146:1–11.  https://doi.org/10.1016/j.atmosres.2014.03.014 CrossRefGoogle Scholar
  31. Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, Haddad IE, Prévôt ASH (2015) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222.  https://doi.org/10.1038/nature13774 CrossRefGoogle Scholar
  32. Jiang N, Li Q, Su F, Wang Q, Yu X, Kang P, Zhang R, Tang X (2018) Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China. J Environ Sci (China) 66:188–198.  https://doi.org/10.1016/j.jes.2017.05.006 CrossRefGoogle Scholar
  33. Jung J, Lee H, Kim YJ, Liu X, Zhang Y, Gu J, Fan S (2009) Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J Environ Manag 90:3231–3244.  https://doi.org/10.1016/j.jenvman.2009.04.021 CrossRefGoogle Scholar
  34. Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526.  https://doi.org/10.1016/j.atmosenv.2012.06.039 CrossRefGoogle Scholar
  35. Kim E, Hopke PK, Edgerton ES (2004) Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmos Environ 38:3349–3362.  https://doi.org/10.1016/j.atmosenv.2004.03.012 CrossRefGoogle Scholar
  36. Kong S, Han B, Bai Z, Chen L, Shi J, Xu Z (2010) Receptor modeling of PM2.5, PM10, and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Sci Total Environ 408:4681–4694.  https://doi.org/10.1016/j.scitotenv.2010.06.005 CrossRefGoogle Scholar
  37. Lee E, Chan CK, Paatero P (1999) Application of positive matrix factortization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33:3201–3212.  https://doi.org/10.1016/S1352-2310(99)00113-2 CrossRefGoogle Scholar
  38. Li L, Chen CH, Fu JS, Huang C, Streets DG, Huang HY, Zhang GF, Wang YJ, Jang CJ, Wang HL, Chen YR, Fu JM (2011) Air quality and emissions in the Yangtze River Delta, China. Atmos Chem Phys 11:1621–1639.  https://doi.org/10.5194/acp-11-1621-2011 CrossRefGoogle Scholar
  39. Li B, Zhang J, Zhao Y, Yuan S, Zhao Q, Shen G, Wu H (2015) Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China. Atmos Environ 106:223–231.  https://doi.org/10.1016/j.atmosenv.2015.01.064 CrossRefGoogle Scholar
  40. Lin JJ, Tai HS (2001) Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmos Environ 35:2627–2636.  https://doi.org/10.1016/S1352-2310(00)00444-1 CrossRefGoogle Scholar
  41. Lin YC, Tsai CJ, Wu YC, Zhang R, Chi KH, Huang YT, Lin SH, Hsu SC (2015) Characteristics of trace metals in traffic-derived particles in Hsuehshan tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmos Chem Phys 15:4117–4130.  https://doi.org/10.5194/acp-15-4117-2015 CrossRefGoogle Scholar
  42. Liu G, Li J, Wu D, Xu H (2015) Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology 18:135–143.  https://doi.org/10.1016/j.partic.2014.03.011 CrossRefGoogle Scholar
  43. Louie PKK, Watson JG, Chow JC et al (2005) Seasonal characteristics and regional transport of PM2.5 in Hong Kong. Atmos Environ 39:1695–1710.  https://doi.org/10.1016/j.atmosenv.2004.11.017 Google Scholar
  44. Muránszky G, Ovari M, Virág I et al (2011) Chemical characterization of PM10 fractions of urban aerosol. Microchem J 98:1–10.  https://doi.org/10.1016/j.microc.2010.10.002 CrossRefGoogle Scholar
  45. Na K, Sawant AA, Song C, Cocker DR (2004) Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos Environ 38:1345–1355.  https://doi.org/10.1016/j.atmosenv.2003.11.023 CrossRefGoogle Scholar
  46. Paatero P, Tapper U (1993) Analysis of different modes of factor analysis as least squares fit problems. Chemom Intell Lab Syst 18:183–194.  https://doi.org/10.1016/0169-7439(93)80055-M CrossRefGoogle Scholar
  47. Pathak RK, Wang T, Ho KF, Lee SC (2011) Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water-soluble organic carbon (WSOC). Atmos Environ 45:318–325.  https://doi.org/10.1016/j.atmosenv.2010.10.021 CrossRefGoogle Scholar
  48. Report on Source Release of Atmospheric Pollutants in Jiaxing City (2015)Google Scholar
  49. Schauer C, Niessner R, Pöschl U (2003) Polycyclic aromatic hydrocarbons in urban air particulate matter: decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ Sci Technol 37:2861–2868.  https://doi.org/10.1021/es034059s CrossRefGoogle Scholar
  50. Sharma SK, Mandal TK, Jain S, Saraswati, Sharma A, Saxena M (2016) Source apportionment of PM2.5 in Delhi, India using PMF model. Bull Environ Contam Toxicol 97:286–293.  https://doi.org/10.1007/s00128-016-1836-1 CrossRefGoogle Scholar
  51. Shi Z, Shao L, Jones TP, Whittaker AG, Lu S, Bérubé KA, He T, Richards RJ (2003) Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmos Environ 37:4097–4108.  https://doi.org/10.1016/S1352-2310(03)00531-4 CrossRefGoogle Scholar
  52. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182.  https://doi.org/10.1016/S1352-2310(98)00145-9 CrossRefGoogle Scholar
  53. Song Y, Tang X, Xie S, Zhang Y, Wei Y, Zhang M, Zeng L, Lu S (2007) Source apportionment of PM2.5 in Beijing in 2004. J Hazard Mater 146:124–130.  https://doi.org/10.1016/j.jhazmat.2006.11.058 CrossRefGoogle Scholar
  54. Squizzato S, Masiol M, Brunelli A, Pistollato S, Tarabotti E, Rampazzo G, Pavoni B (2013) Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmos Chem Phys 13:1927–1939.  https://doi.org/10.5194/acp-13-1927-2013 CrossRefGoogle Scholar
  55. Stockwell WR, Kuhns H, Etyemezian V et al (2003) The Treasure Valley secondary aerosol study II: modeling of the formation of inorganic secondary aerosols and precursors for southwestern Idaho. Atmos Environ 37:525–534.  https://doi.org/10.1016/S1352-2310(02)00895-6 CrossRefGoogle Scholar
  56. Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z (2004) The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos Environ 38:5991–6004.  https://doi.org/10.1016/j.atmosenv.2004.07.009 CrossRefGoogle Scholar
  57. Tai APK, Mickley LJ, Jacob DJ (2010) Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change. Atmos Environ 44:3976–3984.  https://doi.org/10.1016/j.atmosenv.2010.06.060 CrossRefGoogle Scholar
  58. Tao J, Gao J, Zhang L, Zhang R, Che H, Zhang Z, Lin Z, Jing J, Cao J, Hsu SC (2014) PM2.5 pollution in a megacity of Southwest China: source apportionment and implication. Atmos Chem Phys 14:8679–8699.  https://doi.org/10.5194/acp-14-8679-2014 CrossRefGoogle Scholar
  59. Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544.  https://doi.org/10.1016/1352-2310(94)00276-Q CrossRefGoogle Scholar
  60. Turpin BJ, Cary RA, Huntzicker JJ (1990) An in situ, time-resolved analyzer for aerosol organic and elemental carbon. Aerosol Sci Technol 12:19–161.  https://doi.org/10.1080/02786829008959336 CrossRefGoogle Scholar
  61. Vallius M, Janssen NAH, Heinrich J, Hoek G, Ruuskanen J, Cyrys J, van Grieken R, de Hartog JJ, Kreyling WG, Pekkanen J (2005) Sources and elemental composition of ambient PM2.5 in three European cities. Sci Total Environ 337:147–162.  https://doi.org/10.1016/j.scitotenv.2004.06.018 CrossRefGoogle Scholar
  62. Wang X, Bi X, Sheng G, Fu J (2006a) Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ Monit Assess 119:425–439.  https://doi.org/10.1007/s10661-005-9034-3 CrossRefGoogle Scholar
  63. Wang Y, Zhuang G, Zhang X, Huang K (2006b) The ion chemistry, seasonal cycle, and sources of PM 2.5 and TSP aerosol in Shanghai. Atmos Environ 40:2935–2952.  https://doi.org/10.1016/j.atmosenv.2005.12.051 CrossRefGoogle Scholar
  64. Wang H, Zhuang Y, Wang Y et al (2008) Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J Environ Sci 20:1323–1327.  https://doi.org/10.1016/S1001-0742(08)62228-7 CrossRefGoogle Scholar
  65. Wang J, Hu Z, Chen Y, Chen Z, Xu S (2013) Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos Environ 68:221–229.  https://doi.org/10.1016/j.atmosenv.2012.10.070 CrossRefGoogle Scholar
  66. Wang Y, Jia C, Tao J, Zhang L, Liang X, Ma J, Gao H, Huang T, Zhang K (2016) Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Sci Total Environ 573:1031–1040.  https://doi.org/10.1016/j.scitotenv.2016.08.179 CrossRefGoogle Scholar
  67. Xiao ZM, Bi XH, Feng YC et al (2012) Source apportionment of ambient PM10 and PM2.5 in urban area of Ningbo city. Res Environ Sci 25:549–555Google Scholar
  68. Xiu G, Zhang D, Chen J, Huang X, Chen Z, Guo H, Pan J (2004) Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air. Atmos Environ 38:227–236.  https://doi.org/10.1016/j.atmosenv.2003.09.053 CrossRefGoogle Scholar
  69. Xu L, Chen X, Chen J, Zhang F, He C, Zhao J, Yin L (2012) Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos Res 104–105:264–272.  https://doi.org/10.1016/j.atmosres.2011.10.017 CrossRefGoogle Scholar
  70. Xue YH, Wu JH, Feng YC, Dai L, Bi XH, Li X, Zhu T, Tang SB, Chen MF (2010) Source characterization and apportionment of PM10 in Panzhihua, China. Aerosol Air Qual Res 10:367–377.  https://doi.org/10.4209/aaqr.2010.01.0002 CrossRefGoogle Scholar
  71. Yang F, He K, Ye B, Chen X, Cha L, Cadle SH, Chan T, Mulawa PA (2005) One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos Chem Phys 5:1449–1457.  https://doi.org/10.5194/acpd-5-217-2005 CrossRefGoogle Scholar
  72. Yao X, Lau APS, Fang M, Chan CK, Hu M (2003) Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1—inorganic ions. Atmos Environ 37:2991–3000.  https://doi.org/10.1016/S1352-2310(03)00255-3 CrossRefGoogle Scholar
  73. Yassaa N, Meklati BY, Cecinato A, Marino F (2001) Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area. Atmos Environ 35:1843–1851CrossRefGoogle Scholar
  74. Yli-Tuomi T, Venditte L, Hopke PK, Basunia MS, Landsberger S, Viisanen Y, Paatero J (2003) Composition of the Finnish Arctic aerosol: collection and analysis of historic filter samples. Atmos Environ 37:2355–2364.  https://doi.org/10.1016/S1352-2310(03)00164-X CrossRefGoogle Scholar
  75. Yu Y, Schleicher N, Norra S, Fricker M, Dietze V, Kaminski U, Cen K, Stüben D (2011) Dynamics and origin of PM2.5during a three-year sampling period in Beijing, China. J Environ Monit 13:334–346.  https://doi.org/10.1039/c0em00467g CrossRefGoogle Scholar
  76. Yuan Z, Lau AKH, Zhang H et al (2006) Identification and spatiotemporal variations of dominant PM10 sources over Hong Kong. Atmos Environ 40:1803–1815.  https://doi.org/10.1016/j.atmosenv.2005.11.030 CrossRefGoogle Scholar
  77. Yue W, Li X, Liu J, Li Y, Yu X, Deng B, Wan T, Zhang G, Huang Y, He W, Hua W, Shao L, Li W, Yang S (2006) Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci Total Environ 368:916–925.  https://doi.org/10.1016/j.scitotenv.2006.03.043 CrossRefGoogle Scholar
  78. Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, Lee CSL, Zhu L, Chen Z, Zhao Y, Shen Z (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074.  https://doi.org/10.5194/acp-13-7053-2013 CrossRefGoogle Scholar
  79. Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, Lee CSL, Zhu L, Chen Z, Zhao Y, Shen Z (2014) Erratum: to chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective published in (atmospheric chemistry and physics (2013) 13 (7053-7074)). Atmos Chem Phys 14:175.  https://doi.org/10.5194/acp-14-175-2014 CrossRefGoogle Scholar
  80. Zhang F, wu WZ, rong CH et al (2015a) Seasonal variations and chemical characteristics of PM2.5 in Wuhan, Central China. Sci Total Environ 518–519:97–105.  https://doi.org/10.1016/j.scitotenv.2015.02.054 Google Scholar
  81. Zhang N, Han B, He F, Xu J, Niu C, Zhou J, Kong S, Bai Z, Xu H (2015b) Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Qual Atmos Health 8:347–357.  https://doi.org/10.1007/s11869-014-0289-0 CrossRefGoogle Scholar
  82. Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y (2015c) Formation of urban fine particulate matter. Chem Rev 115:3803–3855.  https://doi.org/10.1021/acs.chemrev.5b00067 CrossRefGoogle Scholar
  83. Zhao PS, Dong F, He D, Zhao XJ, Zhang XL, Zhang WZ, Yao Q, Liu HY (2013) Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos Chem Phys 13:4631–4644.  https://doi.org/10.5194/acp-13-4631-2013 CrossRefGoogle Scholar
  84. Zheng M, Salmon LG, Schauer JJ, Zeng L, Kiang CS, Zhang Y, Cass GR (2005) Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos Environ 39:3967–3976.  https://doi.org/10.1016/j.atmosenv.2005.03.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhipeng Zhao
    • 1
  • Sheng Lv
    • 2
  • Yihua Zhang
    • 3
  • Qianbiao Zhao
    • 3
  • Lin Shen
    • 1
  • Shi Xu
    • 1
  • Jianqiang Yu
    • 1
  • Jingwen Hou
    • 1
  • Chengyu Jin
    • 1
    Email author
  1. 1.Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Jiaxing Environmental Monitoring StationJiaxingChina
  3. 3.Shanghai Environmental Monitoring CenterShanghaiChina

Personalised recommendations