Advertisement

A survey of extended-spectrum β-lactamase-producing Enterobacteriaceae in environmental water in Okinawa Prefecture of Japan and relationship with indicator organisms

  • Kazufumi MiyagiEmail author
  • Itaru Hirai
Research Article

Abstract

Surveys of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-pE) in stream water and untreated wastewater were carried out in Okinawa Prefecture, Japan. Thirty-six samples of water were collected from 18 streams in Okinawa Prefecture, as well as ten samples of wastewater flowing into four wastewater treatment plants (WWTPs). We investigated bacterial species, Escherichia coli O antigen, ESBL phenotype, ESBL genotype, and pulsed-field gel electrophoresis (PFGE) type of isolates, and total viable count and fecal coliforms as indicator organisms. The relation between indicator organisms and ESBL-pE was also validated using the same samples. A total of 141 ESBL-pE including 107 E. coli, 15 Klebsiella pneumoniae, 2 Proteus mirabilis, and 17 other species was isolated from stream water and wastewater. Of the 141 ESBL-pE, 14.9% and 54.6% were found to be blaCTX-M-15 and blaCTX-M-14-like types, respectively, which have been found in hospital isolates in Okinawa. Two pairs of possibly related patterns according to PFGE criteria were isolated from stream water and wastewater in two districts. When ESBL-pE was significantly isolated, total viable count and fecal coliform boundaries were ≥ 6.0 × 103 CFU/ml and ≥ 4.3 × 102 most probable number/100 ml, respectively. These results suggested that ESBL-pE isolated from stream water is human derived, and that total viable count and fecal coliforms will be useful as indicators for confirming the spread of ESBL-pE to the environment by means of simple hygiene surveys.

Keywords

ESBL-producing Enterobacteriaceae Survey Stream water Wastewater Indicator organism Relationship 

Notes

Acknowledgments

We thank the staff of Okinawa Prefecture Sewerage Management Office who allowed us to conduct the research and provided access to wastewater.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_4189_MOESM1_ESM.docx (59 kb)
ESM 1 (DOCX 59 kb)

References

  1. Abera B, Kibret M, Mulu W (2016) Extended-spectrum beta (β)-lactamases and antibiogram in Enterobacteriaceae from clinical and drinking water sources from Bahir Dar City, Ethiopia. PLoS One 11:e0166519CrossRefGoogle Scholar
  2. Adelowo OO, Caucci S, Banjo OM, Nnanna OC, Awotipe EO, Peters FB, Fagade OE, Berendonk TU (2018) Extended spectrum beta-lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Environ Sci Pollut Res 25:2744–2755CrossRefGoogle Scholar
  3. Birgy A, Bidet P, Levy C, Sobral E, Cohen R, Bonacorsi S (2017) CTX-M-27–producing Escherichia coli of sequence type 131 and clade C1-M27, France. Emerg Infect Dis 23:885CrossRefGoogle Scholar
  4. Blaak H, van Hoek AHAM, Hamidjaja RA, van der Plaats RQJ, Kerkhof-de Heer L, de Roda Husman AM, Schets FM (2015) Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One 10:e0135402CrossRefGoogle Scholar
  5. Boyd DA, Tyler S, Christianson S, McGeer A, Muller MP, Willey BM, Bryce E, Gardam M, Nordmann P, Mulvey MR, the Canadian Nosocomial Infection Surveillance Program, Health Canada (2004) Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicro Agents Chemother 48:3758–3764CrossRefGoogle Scholar
  6. Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951CrossRefGoogle Scholar
  7. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976CrossRefGoogle Scholar
  8. Chen PA, Hung CH, Huang PC, Chen JR, Huang IF, Chen WL, Chiou YH, Hung WY, Wang JL, Cheng MF (2016) Characteristics of CTX-M extended-spectrum β-lactamase-producing Escherichia coli strains isolated from multiple rivers in Southern Taiwan. Appl Environ Microbiol 82:1889–1897CrossRefGoogle Scholar
  9. Chia J-H, Chu C, Su LH, Chiu C-H, Kuo A-J, Sun C-F, Wu T-L (2005) Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M β-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol 43:4486–4491CrossRefGoogle Scholar
  10. Chong Y, Shimoda S, Yakushiji H, Ito Y, Miyamoto T, Kamimura T, Shimono N, Akashi K (2013) Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J Med Microbiol 62:1038–1043CrossRefGoogle Scholar
  11. Chong T, Shimoda S, Shimono N (2018) Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol 61:185–188CrossRefGoogle Scholar
  12. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, Mulvey MR, Nordmann P, Ruppé E, Sarthou JL, Frank T, Vimont S, Arlet G, Branger C, Woodford N, Erick Denamur E (2009) Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 64:274–277CrossRefGoogle Scholar
  13. Conte D, Palmeiro JK, da Silva Nogueira K, de Lima TMR, Cardoso MA, Pontarolo R, Degaut Pontes FL, Dalla-Costa LM (2017) Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf 136:62–69CrossRefGoogle Scholar
  14. Farmer III JJ, Boatwright KD, Michael J (2007) 42 Enterobacteriaceae: introduction and identification. In: Murray PR (ed) Manual of clinical microbiology, Vol. 1, 9th edn. ASM, Washington D.C., pp 649–669Google Scholar
  15. Gao L, Tan Y, Zhang X, Hu J, Miao Z, Wei L, Chai T (2015) Emissions of Escherichia coli carrying extended-spectrum β-lactamase resistance from pig farms to the surrounding environment. Int J Environ Res Public Health 12:4203–4213CrossRefGoogle Scholar
  16. Guyomard-Rabenirina S, Dartron C, Falord M, Sadikalay S, Ducat C, Richard V, Breurec S, Gros O, Talarmin A (2017) Resistance to antimicrobial drugs in different surface waters and wastewaters of Guadeloupe. PLoS One 12:e0173155CrossRefGoogle Scholar
  17. Hartmann A, Locatelli A, Amoureux L, Depret G, Jolivet C, Gueneau E, Newwirth C (2012) Occurrence of CTX-M producing Escherichia coli in soils, cattle, and farm environment in France (Burgundy region). Front Microbio 3:83CrossRefGoogle Scholar
  18. Jacoby GA, Munoz-Price LS (2005) The new β-lactamases. N Engl J Med 352:380–391CrossRefGoogle Scholar
  19. Japan Ministry of the Environment (1993) Article 16, standard of environment, environmental standards lawGoogle Scholar
  20. Kittinger C, Lipp M, Folli B, Kirschner A, Baumert R, Galler H, Grisold AJ, Luxner J, Weissenbacher M, Farnleitner AH, Zarfel G (2016) Enterobacteriaceae isolated from the River Danube: antibiotic resistances, with a focus on the presence of ESBL and carbapenemases. PLoS One 11:e0165820CrossRefGoogle Scholar
  21. Li S, Zhu ZC, Wang L, Zhou YF, Tang YJ, Miao ZM (2015) Prevalence and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae in spring waters. Lett Appl Microbiol 61:544–548CrossRefGoogle Scholar
  22. Monstein HJ, Östholm-Balkhed Å, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE (2007) Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 115:1400–1408CrossRefGoogle Scholar
  23. Nakama R, Shingaki A, Miyazato H, Higa R, Nagamoto C, Hamamoto K, Ueda S, Hachiman T, Touma Y, Miyagi K, Kawahara R, Toyosato T, Hirai I (2016) Current status of extended spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis in Okinawa Prefecture, Japan. J Infect Chemother 22:281–286CrossRefGoogle Scholar
  24. Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Miyamoto T, Higuchi T, Ono T, Nishio H, Sueyoshi N, Kida K, Satoh K, Toda H, Toyokawa M, Nishi I, Sakumoto M, Akagi M, Nakai I, Kofuku T, Orita T, Wada Y, Zikimoto T, Koike C, Kinoshita S, Hirai I, Takahashi H, Matsumura N, Yamamoto Y (2012) Epidemiology of Escherichia coli, Klebsiella species, and Proteus mirabilis strains producing extended-spectrum β-lactamase from clinical samples in the Kinki region of Japan. Am J Clin Pathol 137:620–626CrossRefGoogle Scholar
  25. Nakamura A, Komatsu M, Noguchi N, Ohno Y, Hashimoto E, Matsutani H, Abe N, Fukuda S, Kohno H, Nakamura F, Matsuo S, Kawano S (2016) Analysis of molecular epidemiologic characteristics of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli colonizing feces in hospital patients and community dwellers in a Japanese city. J Infect Chemother 22:102–107CrossRefGoogle Scholar
  26. Nguyen H, Shier KL, Graber CJ (2014) Determining a clinical framework for use of cefepime and β-lactam/β-lactamase inhibitors in the treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 69:871–880CrossRefGoogle Scholar
  27. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA, the International Klebsiella Study Group (2003) Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicro Agents Chemother 47:3554–3560CrossRefGoogle Scholar
  28. Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166CrossRefGoogle Scholar
  29. Randall LP, Lodge MP, Elviss NC, Lemma FL, Hopkins KL, Teale CJ, Woodford N (2017) Evaluation of meat, fruit and vegetables from retail stores in five United Kingdom regions as sources of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Escherichia coli. Int J Food Microbiol 241:283–290CrossRefGoogle Scholar
  30. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67CrossRefGoogle Scholar
  31. Said LB, Jouini A, Alonso CA, Klibi N, Dziri R, Boudabous A, Slama KB, Torres C (2016) Characteristics of extended-spectrum β-lactamase (ESBL)- and pAmpC beta-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Sci Total Environ 550:1103–1109CrossRefGoogle Scholar
  32. Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, Tian G-B, Doi Y (2009) Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in Western Pennsylvania. Antimicro Agents Chemother 53:4733–4739CrossRefGoogle Scholar
  33. Tacão M, Moura A, Correia A, Henriques I (2014) Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res 48:100–107CrossRefGoogle Scholar
  34. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239Google Scholar
  35. The European Parliament and The Council (2006) Directive 2006/7/EC. In: The European UnionGoogle Scholar
  36. United States Environmental Protection Agency (2012) Office of Water EPA-820-F-12-061, 2012 recreational water quality criteriaGoogle Scholar
  37. Woodford N, Fagan EJ, Ellington MJ (2005) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 57:154–155CrossRefGoogle Scholar
  38. Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang H, Huang J, Chen M, Xue L, Wang J (2017) Antibiotic-resistant extended spectrum ß-lactamase- and plasmid-mediated AmpC-producing Enterobacteriaceae isolated from retail food products and the Pearl River in Guangzhou, China. Front Microbiol 8:96Google Scholar
  39. Zarfel G, Lipp M, Gürtl E, Folli B, Baumert R, Kittinger C (2017) Troubled water under the bridge: screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Sci Total Environ 593-594:399–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Microbiology, School of Health Sciences, Faculty of MedicineUniversity of the RyukyusOkinawaJapan

Personalised recommendations