Environmental Science and Pollution Research

, Volume 26, Issue 10, pp 9730–9738 | Cite as

Uptake kinetics and interaction of selenium species in tomato (Solanum lycopersicum L.) seedlings

  • Mengke Wang
  • Qin Peng
  • Fei Zhou
  • Wenxiao Yang
  • Quang Toan Dinh
  • Dongli LiangEmail author
Research Article


Selenite and selenate are two main selenium (Se) forms absorbed by plants. The comparative effects of selenite and/or selenate on Se uptake and translocation in plants in spite of their coexistence in the environment are still unclear. Therefore, tomato (Solanum lycopersicum L.) seedlings were grown in a hydroponic solution with exogenous selenite, selenate, or selenite and selenate mixed, and Se concentrations in shoots, roots, and xylem sap were measured after harvest. Results showed that selenite (> 0.1 mg Se L−1) could cause phytotoxicity more easily than selenate (> 1 mg Se L−1) under hydroponic conditions. And the absorbability rate of tomato to selenate was higher than that to selenite when Se application level was 0.0175–0.2998 mg L−1, while the opposite result was observed in other Se concentrations. More Se accumulated in roots and Se(VI) in the xylem sap decreased when both Se forms supplied. This study demonstrated that the difference between selenite and selenate on Se uptake and translocation in tomatoes depended on exogenous Se concentration. And selenite could inhibit the absorption and translocation of selenate when supplied with both Se forms.


Dynamic absorption Interactive effect Selenite Selenate Xylem-based transport 


Funding information

This work was supported by the National Natural Science Foundation of China (grant number 41571454, to D.L. Liang).


  1. Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44(6):1083–1087CrossRefGoogle Scholar
  2. Barberon M, Berthomieu P, Clairotte M, Shibagaki N, Davidian JC, Gosti F (2008) Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1; 1 and SULTR1; 2. New Phytol 180(3):608–619CrossRefGoogle Scholar
  3. Bitterli C, Bañuelos GS, Schulin R (2010) Use of transfer factors to characterize uptake of selenium by plants. J Geochem Explor 107(2):206–216CrossRefGoogle Scholar
  4. Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276(1–2):359–367CrossRefGoogle Scholar
  5. De Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TS, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117(4):1487–1494CrossRefGoogle Scholar
  6. Dinh QT, Cui Z, Huang J, Tran T, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D (2018) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112:294–309CrossRefGoogle Scholar
  7. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68CrossRefGoogle Scholar
  8. Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Biochem 83:300–307CrossRefGoogle Scholar
  9. Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074CrossRefGoogle Scholar
  10. Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210(2):199–207CrossRefGoogle Scholar
  11. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102CrossRefGoogle Scholar
  12. Longchamp M, Angeli N, Castrec-Rouelle M (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362(1–2):107–117CrossRefGoogle Scholar
  13. Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135CrossRefGoogle Scholar
  14. Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400(1):115–141CrossRefGoogle Scholar
  15. Nie Z, Finck N, Heberling F, Pruessmann T, Liu C, Lützenkirchen J (2017) Adsorption of selenium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems. Environ Sci Technol 51(7):3751–3758CrossRefGoogle Scholar
  16. Nothstein AK, Eiche E, Riemann M, Nick P, Winkel LH, Göttlicher J, Steininger R, Brendel R, von Brasch M, Konrad G, Neumann T (2016) Tracking Se assimilation and speciation through the rice plant–nutrient competition, toxicity and distribution. PLoS One 11(4):e0152081CrossRefGoogle Scholar
  17. Peng Q, Guo L, Ali F, Li J, Qin S, Feng P, Liang D (2016) Influence of pak choi plant cultivation on Se distribution, speciation and bioavailability in soil. Plant Soil 403(1–2):331–342CrossRefGoogle Scholar
  18. Peng Q, Wang M, Cui Z, Huang J, Chen C, Guo L, Liang D (2017) Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environ Pollut 225:637–643CrossRefGoogle Scholar
  19. Perveen R, Suleria HAR, Anjum FM, Butt MS, Pasha I, Ahmad S (2015) Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—a comprehensive review. Crit Rev Food Sci 55(7):919–929CrossRefGoogle Scholar
  20. Pieczyńska J, Grajeta H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29:31–38CrossRefGoogle Scholar
  21. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274CrossRefGoogle Scholar
  22. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:5–25CrossRefGoogle Scholar
  23. Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol 213(4):1582–1596CrossRefGoogle Scholar
  24. Schiavon M, Pilon-Smits EA, Citta A, Folda A, Rigobello MP, Dalla VF (2016) Comparative effects of selenate and selenite on selenium accumulation, morphophysiology, and glutathione synthesis in Ulva australis. Environ Sci Pollut R 23(15):15023–15032CrossRefGoogle Scholar
  25. Sharma S, Bansal A, Dhillon SK, Dhillon KS (2010) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329(1–2):339–348CrossRefGoogle Scholar
  26. Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153(1):327–336CrossRefGoogle Scholar
  27. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184CrossRefGoogle Scholar
  28. Torres J, Pintos V, Domínguez S, Kremer C, Kremer E (2010) Selenite and selenate speciation in natural waters: interaction with divalent metal ions. J Solut Chem 39(1):1–10CrossRefGoogle Scholar
  29. Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot-London 112(6):965–972CrossRefGoogle Scholar
  30. Versini A, Di Tullo P, Aubry E, Bueno M, Thiry Y, Pannier F, Castrec-Rouelle M (2016) Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass. Plant Physiol Biochem 108:372–380CrossRefGoogle Scholar
  31. Wang S, Liang D, Wang D, Wei W, Fu D, Lin Z (2012) Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci Total Environ 427:159–164CrossRefGoogle Scholar
  32. White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot-London 100(1):111–118CrossRefGoogle Scholar
  33. Ximénez-Embún P, Alonso I, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52(4):832–838CrossRefGoogle Scholar
  34. Yu XZ, Gu JD (2007) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut R-Int 14:510–517CrossRefGoogle Scholar
  35. Yu XZ, Gu JD (2008) Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environ Sci Pollut R 15:499–508CrossRefGoogle Scholar
  36. Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292CrossRefGoogle Scholar
  37. Zhang Y, Pan G, Chen J, Hu Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 253(2):437–443CrossRefGoogle Scholar
  38. Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191CrossRefGoogle Scholar
  39. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153(4):1871–1877CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mengke Wang
    • 1
  • Qin Peng
    • 1
    • 2
  • Fei Zhou
    • 1
  • Wenxiao Yang
    • 1
  • Quang Toan Dinh
    • 1
  • Dongli Liang
    • 1
    • 3
    Email author
  1. 1.College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
  2. 2.Chongqing Key Laboratory of Environmental Materials & Remediation TechnologiesChongqing University of Arts and SciencesChongqingChina
  3. 3.Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of AgricultureYanglingChina

Personalised recommendations