Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 8, pp 7640–7650 | Cite as

Monitoring of environmental persistent organic pollutants in hair samples collected from wild terrestrial mammals of Primorsky Krai, Russia

  • Evangelia I. Iatrou
  • Vasiliy Tsygankov
  • Ivan Seryodkin
  • Manolis N. Tzatzarakis
  • Elena Vakonaki
  • Emmanouil Barbounis
  • Alexander M. Zakharenko
  • Vladimir V. Chaika
  • Alexander A. Sergievich
  • Aristidis M. TsatsakisEmail author
  • Kirill Golokhvast
Research Article

Abstract

Persistent organic pollutants (POPs) constitute a wide range of chemicals. Their release into the environment has raised great concern due to their potentially harmful impact in humans and wildlife species. The aim of this current study was to detect selected POPs in hair samples of wild terrestrial mammals from Primorsky Krai, Russia, so as to assess potential environmental exposure. The tested wild species were leopard cat, musk deer, wolf, amur hedgehog, and raccoon dog. The targeted organochlorines were hexachlorobenzene (HCB) and DDTs (opDDE, ppDDE, and opDDD), polychlorinated biphenyl (PCB) congeners (28, 52, 101, 118, 138, 153, and 180), and polycyclic aromatic hydrocarbons (PAHs) (acenaphylene (ACEN), fluorene (FLU), anthracene (ANTH) phenathrene (PHEN), and pyrene (PYR)). The detection of POPs was conducted in hair samples by a one-step hair extraction method, by using a headspace solid-phase microextraction technique (HS-SPME) and analyzed then by GC-MS. The majority of the wild animal hair samples were found positive in all tested pollutants. More specifically, the percentage of positive hair samples for HCB was 93.3% and for DDTs, PCBs, and PAHs, 20.0 to 100.0%, 6.7 to 100.0%, and 75.0 to 100.0%, respectively. DDT, PCB, and PAH detection ranged from 1.26 to 52.06 pg mg−1, 0.73 to 31.34 pg mg−1, and 2.59 to 35.00 pg mg−1, respectively. The highest mean concentration levels of all tested pollutants were found for musk deer (PCBs 12.41 pg mg−1, DDTs 21.87 pg mg−1, PAHs 22.12 pg mg−1) compared to the other wild species. To the best of our knowledge, this is the first study that provides results regarding contamination in different terrestrial mammals by POP exposure. The use of hair as a matrix is proven to be an effective tool for nondestructive biological monitoring of POP contamination in terrestrial ecosystems.

Keywords

Hair POPs Wild terrestrial mammals HS-SPME–GC-MS Biomonitoring Russia 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (project No. 18-14-00120).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2019_4171_MOESM1_ESM.docx (97 kb)
ESM 1 (DOCX 97 kb)

References

  1. Ali N, Malik RN, Mehdi T, Eqani SAMAS, Javeed A, Neels H, Covaci A (2013) Organohalogenated contaminants (OHCs) in the serum and hair of pet cats and dogs: biosentinels of indoor pollution. Sci Total Environ 449:29–36.  https://doi.org/10.1016/j.scitotenv.2013.01.037 CrossRefGoogle Scholar
  2. Barbounis EG, Tzatzarakis MN, Alegakis AK, Kokkinaki A, Karamanos N, Tsakalof A, Tsatsakis AM (2012) Assessment of PCBs exposure in human hair using double focusing high resolution mass spectrometry and single quadrupole mass spectrometry. Toxicol Lett 210:225–231.  https://doi.org/10.1016/j.toxlet.2011.07.031 CrossRefGoogle Scholar
  3. Cabrerizo A, Dachs J, Barceló D, Jones KC (2012) Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses. Environ Sci Technol 46:1396–1405.  https://doi.org/10.1021/es203425b CrossRefGoogle Scholar
  4. Covaci A, Tutudaki M, Tsatsakis AM, Schepens P (2002) Hair analysis: another approach for the assessment of human exposure to selected persistent organochlorine pollutants. Chemosphere 46:413–418.  https://doi.org/10.1016/S0045-6535(01)00065-0 CrossRefGoogle Scholar
  5. Covaci A, Hura C, Gheorghe A, Neels H, Dirtu AC (2008) Organochlorine contaminants in hair of adolescents from Iassy, Romania. Chemosphere 72:16–20.  https://doi.org/10.1016/j.chemosphere.2008.02.058 CrossRefGoogle Scholar
  6. D’Havé H, Scheirs J, Covaci A et al (2006) Nondestructive pollution exposure assessment in the european hedgehog (Erinaceuseuropaeus): III. Hair as an indicator of endogenous organochlorine compound concentrations. Environ Toxicol Chem 25:158–167.  https://doi.org/10.1897/05-208R.1 CrossRefGoogle Scholar
  7. Dahmardeh Behrooz R, Barghi M, Bahramifar N, Esmaili-Sari A (2012) Organochlorine contaminants in the hair of Iranian pregnant women. Chemosphere 86:235–241.  https://doi.org/10.1016/j.chemosphere.2011.09.031 CrossRefGoogle Scholar
  8. González-Gómez X, Cambeiro-Pérez N, Martínez-Carballo E, Simal-Gándara J (2018) Screening of organic pollutants in pet hair samples and the significance of environmental factors. Sci Total Environ 625:311–319.  https://doi.org/10.1016/j.scitotenv.2017.12.270 CrossRefGoogle Scholar
  9. Grassman LI (2000) Movements and diet of the leopard cat Prionailurusbengalensis in a seasonal evergreen forest in south-central Thailand. Acta Theriol 45:421–426.  https://doi.org/10.4098/AT.arch.00-41 CrossRefGoogle Scholar
  10. He C-T, Yan X, Wang M-H, Zheng XB, Chen KH, Guo MN, Zheng J, Chen SJ (2017) Dichloro-diphenyl-trichloroethanes (DDTs) in human hair and serum in rural and urban areas in South China. Environ Res 155:279–286.  https://doi.org/10.1016/j.envres.2017.02.011 CrossRefGoogle Scholar
  11. HercegRomanić S, Klinčić D, Kljaković-Gašpić Z et al (2015) Organochlorine pesticides and polychlorinated biphenyl congeners in wild terrestrial mammals from Croatia: interspecies comparison of residue levels and compositions. Chemosphere 137:52–58.  https://doi.org/10.1016/j.chemosphere.2015.05.026 CrossRefGoogle Scholar
  12. Imbert C, Caniglia R, Fabbri E, Milanesi P, Randi E, Serafini M, Torretta E, Meriggi A (2016) Why do wolves eat livestock?: factors influencing wolf diet in northern Italy. Biol Conserv 195:156–168.  https://doi.org/10.1016/j.biocon.2016.01.003 CrossRefGoogle Scholar
  13. Jaspers VLB, Dietz R, Sonne C, Letcher RJ, Eens M, Neels H, Born EW, Covaci A (2010) A screening of persistent organohalogenated contaminants in hair of East Greenland polar bears. Sci Total Environ 408:5613–5618.  https://doi.org/10.1016/j.scitotenv.2010.07.059 CrossRefGoogle Scholar
  14. Katsikantami I, Sifakis S, Tzatzarakis M et al (2016) A global assessment of phthalates burden and related links to health effects. Environment International 97:212–236.  https://doi.org/10.1016/j.envint.2016.09.013 CrossRefGoogle Scholar
  15. Kavvalakis M, Tsatsakis A (2012) The atlas of dialkylphosphates; assessment of cumulative human organophosphorus pesticides’ exposure. Forensic Sci Int 218:111–122.  https://doi.org/10.1016/j.forsciint.2011.10.019 CrossRefGoogle Scholar
  16. Liang B, Liu X, Hou J, Liang G, Gong W, Xu D, Zhang L (2014) PCBs levels and indicator congeners in children’s and adolescents’ hair. Environ Pollut 185:10–15.  https://doi.org/10.1016/j.envpol.2013.10.014 CrossRefGoogle Scholar
  17. Malarvannan G, Isobe T, Covaci A, Prudente M, Tanabe S (2013) Accumulation of brominated flame retardants and polychlorinated biphenyls in human breast milk and scalp hair from the Philippines: levels, distribution and profiles. Sci Total Environ 442:366–379.  https://doi.org/10.1016/j.scitotenv.2012.10.005 CrossRefGoogle Scholar
  18. Mamontova EA, Mamontov AA, Tarasova EN, Kuzmin MI, Ganchimeg D, Khomutova MY, Gombosuren O, Ganjuurjav E (2013) Polychlorinated biphenyls in surface soil in urban and background areas of Mongolia. Environ Pollut 182:424–429.  https://doi.org/10.1016/j.envpol.2013.08.001 CrossRefGoogle Scholar
  19. Mizukawa H, Nomiyama K, Nakatsu S, Yachimori S, Hayashi T, Tashiro Y, Nagano Y, Tanabe S (2013) Species-specific differences in the accumulation features of organohalogen contaminants and their metabolites in the blood of Japanese terrestrial mammals. Environ Pollut 174:28–37.  https://doi.org/10.1016/j.envpol.2012.11.004 CrossRefGoogle Scholar
  20. Sutor A, Kauhala K, Ansorge H (2010) Diet of the raccoon dog Nyctereutesprocyonoides — a canid with an opportunistic foraging strategy. Acta Theriol 55:165–176.  https://doi.org/10.4098/j.at.0001-7051.035.2009 CrossRefGoogle Scholar
  21. Tartu S, Bourgeon S, Aars J, et al (2017) Sea ice-associated decline in body condition leads to increased concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from Svalbard, Norway. Sci Total Environ 576:409–419.  https://doi.org/10.1016/j.scitotenv.2016.10.132
  22. Tomza-Marciniak A, Marciniak A, Pilarczyk B, Prokulewicz A, Bąkowska M (2014) Interspecies comparison of chlorinated contaminant concentrations and profiles in wild terrestrial mammals from Northwest Poland. Arch Environ Contam Toxicol 66:491–503.  https://doi.org/10.1007/s00244-013-9989-y CrossRefGoogle Scholar
  23. Tsatsakis A, Tutudaki M (2004) Progress in pesticide and POPs hair analysis for the assessment of exposure. Forensic Sci Int 145:195–199.  https://doi.org/10.1016/j.forsciint.2004.04.036 CrossRefGoogle Scholar
  24. Tsatsakis A, Barbounis M, Kavalakis M (2010) Determination of dialkyl phosphates in human hair for the biomonitoring of exposure to organophosphate pesticides. J Chromatogr B – Anal Technol Biomed Life Sci 878:1246–1252.  https://doi.org/10.1016/j.jchromb.2010.02.021 CrossRefGoogle Scholar
  25. Tzatzarakis M, BE G, KM P et al (2014) Rapid method for the simultaneous determination of DDTs and PCBs in hair of children by headspace solid phase microextraction and gas chromatography-mass spectrometry (HSSPME/GC-MS). Drug Test Anal 6:85–92.  https://doi.org/10.1002/dta.1631 CrossRefGoogle Scholar
  26. Vinceti M, Violi F, Tzatzarakis M, Mandrioli J, Malagoli C, Hatch EE, Fini N, Fasano A, Rakitskii VN, Kalantzi OI, Tsatsakis A (2017) Pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in cerebrospinal fluid of amyotrophic lateral sclerosis patients: a case-control study. Environ Res 155:261–267.  https://doi.org/10.1016/j.envres.2017.02.025 CrossRefGoogle Scholar
  27. Wang W, Zhou R, He L, Liu S, Zhou J, Qi L, Li L, Hu D (2015) The progress in nutrition research of musk deer: implication for conservation. Appl Anim Behav Sci 172:1–8.  https://doi.org/10.1016/j.applanim.2015.09.006 CrossRefGoogle Scholar
  28. Warenik-Bany M, Strucinski P, Piskorska-Pliszczynska J (2016) Dioxins and PCBs in game animals: interspecies comparison and related consumer exposure. Environ Int 89–90:21–29.  https://doi.org/10.1016/j.envint.2016.01.007 CrossRefGoogle Scholar
  29. Yamamoto Y, Ishizaki A, Kataoka H (2015) Biomonitoring method for the determination of polycyclic aromatic hydrocarbons in hair by online in-tube solid-phase microextraction coupled with high performance liquid chromatography and fluorescence detection. J Chromatogr B 1000:187–191.  https://doi.org/10.1016/j.jchromb.2015.07.033 CrossRefGoogle Scholar
  30. Zapletal M, Sodnompil B, Atwood JL, Murdoch JD, Reading RP (2015) Fine-scale habitat use by Daurian hedgehogs in the Gobi-steppe of Mongolia. J Arid Environ 114:100–103.  https://doi.org/10.1016/j.jaridenv.2014.11.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Evangelia I. Iatrou
    • 1
  • Vasiliy Tsygankov
    • 3
  • Ivan Seryodkin
    • 2
    • 3
  • Manolis N. Tzatzarakis
    • 1
  • Elena Vakonaki
    • 1
  • Emmanouil Barbounis
    • 1
  • Alexander M. Zakharenko
    • 3
  • Vladimir V. Chaika
    • 3
  • Alexander A. Sergievich
    • 2
    • 3
  • Aristidis M. Tsatsakis
    • 1
    Email author
  • Kirill Golokhvast
    • 2
    • 3
  1. 1.Laboratory of Toxicology, Medical SchoolUniversity of CreteHeraklionGreece
  2. 2.Pacific Geographical Institute FEB RASVladivostokRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations