Advertisement

Searching variables to assess recreational water quality: the presence of infectious human enterovirus and its correlation with the main variables of water pollution by multivariate statistical approach in Córdoba, Argentina

  • Belquis Pamela Aguirre
  • Gisela Masachessi
  • Leonardo Jesús Ferreyra
  • Patricia Biganzoli
  • Yanina Grumelli
  • Mariangeles Diaz Panero
  • Maribel Martinez Wassaf
  • María Belén Pisano
  • Adriana Welter
  • Arnaldo Mangeaud
  • Viviana Ré
  • Silvia Viviana Nates
  • Jorge Victorio PavanEmail author
Research Article
  • 14 Downloads

Abstract

Surface waters are used by local populations for different purposes, such as recreational activities, water source for human and animal consumption, and irrigation among others, which lead to the need for management strategies on water health and associated risks. During this study, we investigated physicochemical parameters, fecal coliform bacteria, and infectious human enterovirus detection to determine the water quality in different beaches (categorized as an urban area, non-urban areas, and an intermediate position) from San Roque Dam, in Argentina. Multivariate techniques were applied. Principal component analysis allowed identification of subgroup of variables responsible for the water quality. A cluster analysis and multivariate analysis of variance showed the urban beach as the highest pollution area. The following variables (measured at the urban beach) would be enough to describe the quality of the aquatic body: nitrites, fecal coliforms, total phosphorous, and infectious human enterovirus. The infectious human enterovirus was an independent variable detected in 69.1% of the samples showing a steady frequency of detection during the whole period studied and could identify human fecal contaminations as a source of water pollution. The selected variables would contribute to water quality regarding the risk for human health using San Roque dam waters for recreational propose.

Keywords

Water pollution Recreational activities Physicochemical parameters Fecal indicator bacteria Viable human enterovirus Multivariate analysis 

Notes

Funding information

This work was supported by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2012-0998 and PICT 2014-3221) and Universidad Nacional de Córdoba (Secretaría de Ciencia y Técnica 202/2016).

References

  1. Achieng’ AO, Raburu PO, Kipkorir EC, Ngodhe SO, Obiero KO, Ani-Sabwa J (2017) Assessment of water quality using multivariate techniques in River Sosiani, Kenya. Environ Monit Assess 189(280):280.  https://doi.org/10.1007/s10661-017-5992-5 CrossRefGoogle Scholar
  2. Almeida CA, Quintar S, González P, Mallea MA (2007) Influence of urbanization and tourist activities on the water quality of the Potrero de los Funes River (San Luis—Argentina). Environ Monit Assess 133:459–465.  https://doi.org/10.1007/s10661-006-9600-3 CrossRefGoogle Scholar
  3. American Public Health Association (APHA), the American Water Works Association (AWWA) and the Water Environment Federation (WEF) (1998) Standard methods for the examination of water and wastewater, 20th editionGoogle Scholar
  4. American Public Health Association (APHA), the American Water Works Association (AWWA) and the Water Environment Federation (WEF) (2005) Standard methods for the examination of water and wastewater, 22th editionGoogle Scholar
  5. Arnold BF, Wade TJ, Benjamin-Chung J, Schiff KC, Griffith JF, Dufour AP, Weisberg SB, Colford JM (2016) Acute gastroenteritis and recreational water: highest burden among young US children. Am J Public Health 106:1690–1697.  https://doi.org/10.2105/AJPH.2016.303279 CrossRefGoogle Scholar
  6. Barzegar R, Asghari Moghaddam A, Soltani S, Fijani E, Tziritis E, Kazemian N (2017) Heavy metal(loid)s in the groundwater of Shabestar area (NW Iran): source identification and health risk assessment. Expo Health.  https://doi.org/10.1007/s12403-017-0267-5
  7. Borja A, Bricker SB, Dauer DM, Demetriades NT, Ferreira JG, Forbes AT, Hutchings P, Jia X, Kenchington R, Carlos Marques J, Zhu C (2008) Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Mar Pollut Bull 56:1519–1537.  https://doi.org/10.1016/j.marpolbul.2008.07.005 CrossRefGoogle Scholar
  8. Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91:1049–1130.  https://doi.org/10.1007/s00204-016-1913-6 CrossRefGoogle Scholar
  9. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849.  https://doi.org/10.1016/j.envint.2006.05.002 CrossRefGoogle Scholar
  10. Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivar Behav Res 12:43–47.  https://doi.org/10.1207/s15327906mbr1201_3 CrossRefGoogle Scholar
  11. Chang H, Franczyk J, Im ES, Kwon WT, Bae DH, Jung IW (2007) Vulnerability of Korean water resources to climate change and population growth. Water Sci Technol 56:57–62.  https://doi.org/10.2166/wst.2007.536 CrossRefGoogle Scholar
  12. Chapman PM (2007) Determining when contamination is pollution—weight of evidence determinations for sediments and effluents. Environment international, environmental contaminants and their effects: links between environmental chemistry and toxicology. Environ Int 33:492–501.  https://doi.org/10.1016/j.envint.2006.09.001 CrossRefGoogle Scholar
  13. Cho KH, Cha SM, Kang JH, Lee SW, Park Y, Kim JW, Kim JH (2010) Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach. Water Res 44:2189–2202.  https://doi.org/10.1016/j.watres.2009.12.051 CrossRefGoogle Scholar
  14. Cruz MC, Cacciabue DG, Gil JF, Gamboni O, Vicente MS, Wuertz S, Gonzo E, Rajal VB (2012) The impact of point source pollution on shallow groundwater used for human consumption in a threshold country. J Environ Monit 14:2338–2349.  https://doi.org/10.1039/c2em30322a CrossRefGoogle Scholar
  15. David A, Tournoud MG, Perrin JL, Rosain D, Rodier C, Salles C, Bancon-Montigny C, Picot B (2013) Spatial and temporal trends in water quality in a Mediterranean temporary river impacted by sewage effluents. Environ Monit Assess 185:2517–2534.  https://doi.org/10.1007/s10661-012-2728-4 CrossRefGoogle Scholar
  16. EPA US 2012. Recreational Water Quality Criteria [WWW Document]. URL https://www.epa.gov/wqc/2012-recreational-water-quality-criteria. Accessed Aug 10 2017
  17. EPA, O (2016) Nitrate in groundwater—CMAQ [WWW Document]. US EPA. URL https://www.epa.gov/cmaq/nitrate-groundwater-cmaq Accessed 12.17.18
  18. EPA (2017) Standard methods for the examination of water and wastewater. Browse Standard Methods Online [WWW Document], URL https://www.standardmethods.org/store/BrowseSM.cfm?PartID=2. Accessed 25 Nov 2017
  19. Ercumen A, Pickering AJ, Kwong LH, Arnold BF, Parvez SM, Alam M, Sen D, Islam S, Kullmann C, Chase C, Ahmed R, Unicomb L, Luby SP, Colford JM (2017) Animal feces contribute to domestic fecal contamination: evidence from E. coli measured in water, hands, food, flies, and soil in Bangladesh. Environ Sci Technol 51:8725–8734.  https://doi.org/10.1021/acs.est.7b01710 CrossRefGoogle Scholar
  20. Espinosa AC, Arias CF, Sánchez-Colón S, Mazari-Hiriart M (2009) Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system. Environ Health 8(49).  https://doi.org/10.1186/1476-069X-8-49
  21. FDA. U.S. Department of Health and Human Services (2001) BAM: aerobic plate count. Bacteriological analytical manual. Chapter 3. Aerobic plate count: Maturin L and James T. Peeler JT. https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm063346.htm#r3-official. Accessed 27 Nov 2017
  22. Federigi I, Verani M, Carducci A (2017) Sources of bathing water pollution in northern Tuscany (Italy): effects of meteorological variables. Mar Pollut Bull 114:843–848.  https://doi.org/10.1016/j.marpolbul.2016.11.017 CrossRefGoogle Scholar
  23. Gibson KE (2014) Viral pathogens in water: occurrence, public health impact, and available control strategies. Curr Opin Virol 4:50–57.  https://doi.org/10.1016/j.coviro.2013.12.005 CrossRefGoogle Scholar
  24. Gordon DM, Cowling A (2003) The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586.  https://doi.org/10.1099/mic.0.26486-0 CrossRefGoogle Scholar
  25. Guarch-Ribot A, Butturini A (2016) Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis. Sci Total Environ 571:1358–1369.  https://doi.org/10.1016/j.scitotenv.2016.07.060 CrossRefGoogle Scholar
  26. Gutiérrez-Cacciabue D, Teich I, Poma HR, Cruz MC, Balzarini M, Rajal VB (2014) Strategies to optimize monitoring schemes of recreational waters from Salta, Argentina: a multivariate approach. Environ Monit Assess 186:8359–8380.  https://doi.org/10.1007/s10661-014-4010-4 CrossRefGoogle Scholar
  27. Harwood VJ, Butler J, Parrish D, Wagner V (1999) Isolation of fecal coliform bacteria from the diamondback terrapin (Malaclemys terrapin centrata). Appl Environ Microbiol 65:865–867Google Scholar
  28. Hlavsa MC, Roberts VA, Kahler AM, Hilborn ED, Mecher TR, Beach MJ, Wade TJ, Yoder JS (2015) Centers for Disease Control and Prevention (CDC). Outbreaks of illness associated with recreational water—United States, 2011–2012. MMWR 64: 668–672Google Scholar
  29. Huang QS, Greening G, Baker MG, Grimwood K, Hewitt J, Hulston D, van Duin L, Fitzsimons A, Garrett N, Graham D, Lennon D, Shimizu H, Miyamura T, Pallansch MA (2005) Persistence of oral polio vaccine virus after its removal from the immunization schedule in New Zealand. Lancet 366:394–396.  https://doi.org/10.1016/S0140-6736(05)66386-6 CrossRefGoogle Scholar
  30. Jolliffe IT (2002) Principal component analysis, Second edn. Springer, New YorkGoogle Scholar
  31. Lee JY, Yang JS, Han M, Choi J (2010) Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Sci Total Environ 408:896–905.  https://doi.org/10.1016/j.scitotenv.2009.11.001 CrossRefGoogle Scholar
  32. Lewis GD, Metcalf TG (1988) Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl Environ Microbiol 54:1983–1988Google Scholar
  33. Lin J, Ganesh A (2013) Water quality indicators: bacteria, coliphages, enteric viruses. Int J Environ Health Res 23:484–506.  https://doi.org/10.1080/09603123.2013.769201 CrossRefGoogle Scholar
  34. Marsalek J, Rochfort Q (2004) Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. J Toxicol Environ Health A 67:1765–1777.  https://doi.org/10.1080/15287390490492430 CrossRefGoogle Scholar
  35. Ming HX, Zhu L, Zhang Y (2011) Rapid quantification of infectious enterovirus from surface water in Bohai Bay, China using an integrated cell culture-qPCR assay. Mar Pollut Bull 62:2047–2054.  https://doi.org/10.1016/j.marpolbul.2011.07.024 CrossRefGoogle Scholar
  36. Muangthong S, Shrestha S (2015) Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environ Monit Assess 187:548.  https://doi.org/10.1007/s10661-015-4774-1 CrossRefGoogle Scholar
  37. Nyenje PM, Foppen JW, Uhlenbrook S, Kulabako R, Muwanga A (2010) Eutrophication and nutrient release in urban areas of sub-Saharan Africa—a review. Sci Total Environ 408:447–455.  https://doi.org/10.1016/j.scitotenv.2009.10.020 CrossRefGoogle Scholar
  38. Ogwueleka TC (2015) Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria. Environ Monit Assess 187(137):137.  https://doi.org/10.1007/s10661-015-4354-4 CrossRefGoogle Scholar
  39. Partyka ML, Bond RF, Chase JA, Atwill ER (2017) Monitoring bacterial indicators of water quality in a tidally influenced delta: a Sisyphean pursuit. Sci Total Environ 578:346–356.  https://doi.org/10.1016/j.scitotenv.2016.10.179 CrossRefGoogle Scholar
  40. Pavan JV, Masachessi G, Mateos CA, Barril PA, Prez VE, Martínez LC, Giordano MO, Ferreyra LJ, Isa MB, Welter A, Martinez Wassaf M, Re V, Nates SV (2016) Towards the selection of the best discriminating parameters of microbiological water quality: a case study of an urban recreational water resource involving a dam complex in Córdoba, Argentina. In: Méndez-Vilas A (ed) Microbes in the spotlight. Recent progress in the understanding of beneficial and harmful microorganisms. Brown Walker Press, Boca Raton, pp 140–144Google Scholar
  41. Phung D, Huang C, Rutherford S, Dwirahmadi F, Chu C, Wang X, Nguyen M, Nguyen NH, Do CM, Nguyen TH, Dinh TAD (2015) Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environ Monit Assess 187(229):229.  https://doi.org/10.1007/s10661-015-4474-x CrossRefGoogle Scholar
  42. Prevost B, Goulet M, Lucas FS, Joyeux M, Moulin L, Wurtzer S (2016) Viral persistence in surface and drinking water: suitability of PCR pre-treatment with intercalating dyes. Water Res 91:68–76.  https://doi.org/10.1016/j.watres.2015.12.049 CrossRefGoogle Scholar
  43. Prüss A (1998) Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol 27:1–9CrossRefGoogle Scholar
  44. Puig A, Olguín Salinas HF, Borús JA (2016) Recent changes (1973-2014 versus 1903-1972) in the flow regime of the Lower Paraná River and current fluvial pollution warnings in its Delta Biosphere Reserve. Environ Sci Pollut Res Int 23:11471–11492.  https://doi.org/10.1007/s11356-016-6501-z CrossRefGoogle Scholar
  45. Pusch D, Oh DY, Wolf S, Dumke R, Schröter-Bobsin U, Höhne M, Röske I, Schreier E (2005) Detection of enteric viruses and bacterial indicators in German environmental waters. Arch Virol 150:929–947.  https://doi.org/10.1007/s00705-004-0467-8 CrossRefGoogle Scholar
  46. Sanders EC, Yuan Y, Pitchford A (2013) Fecal coliform and E. coli concentrations in effluent-dominated streams of the Upper Santa Cruz Watershed. Water 5:243–261.  https://doi.org/10.3390/w5010243 CrossRefGoogle Scholar
  47. Schiff K, Kinney P (2001) Tracking sources of bacterial contamination in stormwater discharges to Mission Bay, California. Water Environ Res 73:534–542CrossRefGoogle Scholar
  48. Schiff GM, Stefanović GM, Young EC, Sander DS, Pennekamp JK, Ward R (1984) Studies of echovirus-12 in volunteers: determination of minimal infectious dose and the effect of previous infection on infectious dose. J Infect Dis 150:858–866CrossRefGoogle Scholar
  49. Soltani S, Asghari Moghaddam A, Barzegar R, Kazemian N, Tziritis E (2017) Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: application of multivariate statistical analysis and PoS index. Environ Monit Assess 189(455):455.  https://doi.org/10.1007/s10661-017-6171-4 CrossRefGoogle Scholar
  50. Tavakol M, Arjmandi R, Shayeghi M, Monavari SM, Karbassi A (2017) Developing an environmental water quality monitoring program for Haraz River in Northern Iran. Environ Monit Assess 189(410):410.  https://doi.org/10.1007/s10661-017-6125-x CrossRefGoogle Scholar
  51. Torrecilla NJ, Galve JP, Zaera LG, Retamar JF, Álvarez ANA (2005) Nutrient sources and dynamics in a mediterranean fluvial regime (Ebro river, NE Spain) and their implications for water management. Journal of Hydrology, Nutirent Mobility within River Basins: A European Perspective 304:166–182.  https://doi.org/10.1016/j.jhydrol.2004.07.029 Google Scholar
  52. Vialle C, Sablayrolles C, Lovera M, Jacob S, Huau MC, Montrejaud-Vignoles M (2011) Monitoring of water quality from roof runoff: interpretation using multivariate analysis. Water Res 45:3765–3775.  https://doi.org/10.1016/j.watres.2011.04.029 CrossRefGoogle Scholar
  53. Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, Wymer L, Rankin CC, Love D, Li Q, Noble R, Dufour AP (2010) Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ Health 9(66).  https://doi.org/10.1186/1476-069X-9-66
  54. Wiedenmann A, Krüger P, Dietz K, López-Pila JM, Szewzyk R, Botzenhart K (2006) A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal enterococci, Clostridium perfringens, and somatic coliphages. Environ Health Perspect 114:228–236CrossRefGoogle Scholar
  55. Wong K, Fong TT, Bibby K, Molina M (2012) Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ Int 45:151–164.  https://doi.org/10.1016/j.envint.2012.02.009 CrossRefGoogle Scholar
  56. World Health Organization (2004) Polio laboratory manual, 4th edn. WHO, GenevaGoogle Scholar
  57. Zhang W, Wang J, Fan J, Gao D, Ju H (2013) Effects of rainfall on microbial water quality on Qingdao no. 1 Bathing Beach, China. Mar Pollut Bull 66:185–190.  https://doi.org/10.1016/j.marpolbul.2012.10.015 CrossRefGoogle Scholar
  58. Zhang S, Wang W, Zhang K, Xu P, Lu Y (2018) Phosphorus release from cyanobacterial blooms during their decline period in eutrophic Dianchi Lake, China. Environ Sci Pollut Res Int 25:13579–13588.  https://doi.org/10.1007/s11356-018-1517-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Belquis Pamela Aguirre
    • 1
  • Gisela Masachessi
    • 2
  • Leonardo Jesús Ferreyra
    • 2
    • 3
  • Patricia Biganzoli
    • 2
  • Yanina Grumelli
    • 1
  • Mariangeles Diaz Panero
    • 1
  • Maribel Martinez Wassaf
    • 1
  • María Belén Pisano
    • 1
  • Adriana Welter
    • 1
  • Arnaldo Mangeaud
    • 4
  • Viviana Ré
    • 2
  • Silvia Viviana Nates
    • 2
  • Jorge Victorio Pavan
    • 2
    Email author return OK on get
  1. 1.Facultad de Ciencias QuímicasUniversidad Católica de CórdobaCordobaArgentina
  2. 2.Instituto de Virología, Facultad de Ciencias MédicasUniversidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad UniversitariaCórdobaArgentina
  3. 3.Departamento de SaludUniversidad Nacional de La Rioja, Av. Luis M. de la Fuente S/N, Ciudad Universitaria de la Ciencia y de la TécnicaLa RiojaArgentina
  4. 4.Departamento de Bioestadística. Facultad de Ciencias Exactas Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations