Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4997–5007 | Cite as

Fabrication and photocatalytic performance evaluation of hydrodynamic erosion–resistant nano-TiO2–silicone resin composite films

  • Lixin Zhang
  • Lei RaoEmail author
  • Peifang Wang
  • Xiang Guo
  • Yuxiong Wang
Research Article


Herein, we present the preparation of nano-TiO2–silicone resin composite films by double liquid phase spray deposition. The films exhibit better adhesion stability and photocatalytic activity under a hydrodynamic erosion condition than conventional nano-TiO2 composite films. The TiO2 layer morphology and effective TiO2 coverage ratio (CR) were affected by the initial curing time (ICT) of the silicone resin, e.g., the increase in an ICT from 10 to 40 min resulted in a CR change from 79.1 to 98.7%. The surface morphology evolution of composite films was studied under a hydrodynamic erosion period of 4 weeks. Obtained results allowed the 4-week evolution to be divided into four stages (pitting, crack pregnant, banded stripping, and surface stripping periods), additionally revealed that the CR of all samples was remained above 65%. The photocatalytic activity of composite films before and after 4-week hydrodynamic erosion was evaluated by rhodamine B degradation experiments. The 4-week erosion only led to the decrease of the photodegradation efficiencies by less than 40% in all cases. Thus, the fabricated TiO2–silicone composite films demonstrated excellent durability and photocatalytic activity under the conditions of long-term hydrodynamic erosion, allowing one to conclude that this work paves the way to the fabrication of next-generation photocatalytic materials for industrial applications.


Nano-TiO2 Silicone resin Film formation mechanism Photocatalysis Hydrodynamic erosion resistance Photodegradation 



Effective TiO2 coverage ratio


Initial curing time


Scanning electron microscopy


Rhodamine B



We are grateful for grants from the National Science Funds for Creative Research Groups of China (No.51421006), the National Natural Science Foundation of China (No. 51775167), the National Major Projects of Water Pollution Control and Management Technology (No. 2017ZX07204003), and the Qing Lan Project of Jiangsu province.


  1. Anandan S, Rao TN, Sathish N, Rangappa D, Honma I, Miyauchi M (2013) Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. Appl Mater Interfaces 5:207–212CrossRefGoogle Scholar
  2. Barton I, Matejec V, Matousek J (2016) Photocatalytic activity of nanostructured TiO2, coating on glass slides and optical fibers for methylene blue or methyl orange decomposition under different light excitation. J Photochem Photobiol 317:72–80CrossRefGoogle Scholar
  3. Binetti E, Bazzanella N, Comparelli R, Miotello A (2016) Electrophoretic deposition of colloidal TiO2, nanorods towards nano-porous thin-films. Mater Lett 174:226–229CrossRefGoogle Scholar
  4. Cao Y, Zhang W, Yang W (2004) Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J Chem 28:218–222CrossRefGoogle Scholar
  5. Cheng XW, Liang CX, Guan JP, Yang XH, Tang RC (2018) Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric. Appl Surf Sci 427:68–80Google Scholar
  6. Erjave B, Hudoklin P, Perc K, Tišler T, Dolenc MS, Pintar A (2016) Glass fiber-supported TiO2, photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol a and its analogs. Appl Catal B Environ 183:149–158CrossRefGoogle Scholar
  7. Feng J, Huang PY, Joseph DD (1996) Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid. J Non-Newtonian Fluid Mech 63(1):63–88CrossRefGoogle Scholar
  8. Galenda A, Crociani L, Habra NE, Favaro M, Natile MM, Rossetto G (2014) Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2. Appl Surf Sci 314:919–930CrossRefGoogle Scholar
  9. Goyal N, Derksen JJ (2012) Direct simulations of spherical particles sedimenting in viscoelastic fluids. J Non-Newtonian Fluid Mech 183-184:1–13CrossRefGoogle Scholar
  10. Guo X, Rao L, Wang P, Wang C, Ao Y, Jiang T, Wang W (2018) Photocatalytic properties of p25-doped TiO2 composite film synthesized via sol–gel method on cement substrate. J Environ Sci-China 66:71–80CrossRefGoogle Scholar
  11. Hancer M, Arkaz H (2015) A facile fabrication of superhydrophobic nanocomposite coating with contact angles approaching the theoretical limit. Appl Surf Sci 354:342–346CrossRefGoogle Scholar
  12. Hao D, Yang Z, Jiang C, Zhang J (2014) Synergistic photocatalytic effect of TiO2, coatings and p-type semiconductive sic foam supports for degradation of organic contaminant. Appl Catal B Environ 144:196–202CrossRefGoogle Scholar
  13. He HY, He Z, Shen Q (2018) Fabrication and self-cleaning properties of reduced graphene oxide/TiO2: Nd nanohybrid thin films. Particul Sci Technol:1–7.
  14. Hu Z, Li L, Sun B, Meng S, Chen L, Zhu M (2015) Effect of TiO2@SiO2, nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers. Prog Nat Sci 25(4):310–315CrossRefGoogle Scholar
  15. Ismail AA, Bahnemann DW (2010) Metal-free porphyrin-sensitized mesoporous Titania films for visible-light indoor air oxidation. Chemsuschem 3(9):1057–1062CrossRefGoogle Scholar
  16. Jung SH, Kang SW (2014) Formation of TiO2 thin films using NH3 as catalyst, by metalorganic chemical vapor deposition. Jpn J Appl Phys 40:3147–3152CrossRefGoogle Scholar
  17. Kawase Y, Ulbrecht JJ (1981) Sedimentation of particles in non-Newtonian fluids. Chem Eng Commun 13(1–3):55–64CrossRefGoogle Scholar
  18. Kumar SA, Sasikumar A (2010) Studies on novel silicone/phosphorus/sulphur containing nano-hybrid epoxy anticorrosive and antifouling coatings. Prog Org Coat 68:189–200CrossRefGoogle Scholar
  19. Lai Y, Jin L, Hang J, Sun X, Shi L (2015) Highly transparent thermal stable silicone/titania hybrids with high refractive index for led encapsulation. J Coat Technol Res 12:1185–1192CrossRefGoogle Scholar
  20. Lee MK, Huang JJ, Shih CM, Cheng CC (2002) Properties of TiO2 thin films on inp substrate prepared by liquid phase deposition. Jpn J Appl Phys 41:4689–4690CrossRefGoogle Scholar
  21. Levine S, Bowen BD, Partridge SJ (1989) Stabilization of emulsions by fine particles II. Capillary and van der Waals forces between particles. Colloid Surf 38(2):345–364CrossRefGoogle Scholar
  22. Leyland NS, Podporska-Carroll J, Browne J, Hinder S, Quilty B, Pillai SC (2016) Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci Rep 6:24770CrossRefGoogle Scholar
  23. Li X, Gao J, Zeng Z (2007) Ph-resistant titania hybrid organic-inorganic sol-gel coating for solid-phase microextraction of polar compounds. Anal Chim Acta 590:26–33CrossRefGoogle Scholar
  24. Li TX, Su HB, Gao L, Jiang L, Zhang CX, Han YQ, Wang YM, Wang Q (2016) Performance and characterization of resistance to ultraviolet radiation of Vi-POSS-TiO2/EP nanocomposites. Mater Sci Forum 852:411–416CrossRefGoogle Scholar
  25. Li C, Sun Y, Cheng M, Sun S, Hu S (2018) Fabrication and characterization of a TiO2/polysiloxane resin composite coating with full-thickness super-hydrophobicity. Chem Eng J 333:361–369CrossRefGoogle Scholar
  26. Maki H, Okumura Y, Ikuta H, Mizuhata M (2014) Ionic equilibria for synthesis of TiO2 thin films by the liquid-phase deposition. J Phys Chem C 118:11964–11974CrossRefGoogle Scholar
  27. Mallak M, Bockmeyer M, Löbmann P (2007) Liquid phase deposition of TiO2 on glass: systematic comparison to films prepared by sol gel processing. Thin Solid Films 515:8072–8077CrossRefGoogle Scholar
  28. Mazur M, Wojcieszak D, Kaczmarek D, Domaradzki J, Song S, Gibson D, Placido F, Mazur P, Kalisz M, Poniedzialek A (2016) Functional photocatalytically active and scratch resistant antireflective coating based on TiO2, and SiO2. Appl Surf Sci 380:165–171CrossRefGoogle Scholar
  29. Moskalewicz T, Czyrska-Filemonowicz A, Boccaccini AR (2007) Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on Ti-6Al-7Nb alloy. Surf Coat Technol 201:7467–7471CrossRefGoogle Scholar
  30. Nazari M, Golestani-Fard F, Bayati R, Eftekhari-Yekta B (2015) Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes. Superlattice Microst 80:91–101CrossRefGoogle Scholar
  31. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349CrossRefGoogle Scholar
  32. Peralta-Hernández JM, Manríquez J, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2007) Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition. J Hazard Mater 147:588–593CrossRefGoogle Scholar
  33. Qiu S, Xu S, Ma F, Yang J (2011) The photocatalytic efficiency of the metal doped TiO2, with ceramic foam as catalyst carriers. Powder Technol 210:83–86CrossRefGoogle Scholar
  34. Rao KVS, Rachel A, Subrahmanyam M, Boule P (2003) Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B Environ 46:77–85CrossRefGoogle Scholar
  35. Ren Y, Zhang Y, Gu Y, Zeng Q, Ren Y, Zhang Y et al (2017) Flame retardant polyacrylonitrile fabrics prepared by organic-inorganic hybrid silica coating via sol-gel technique. Prog Org Coat 112:225–233CrossRefGoogle Scholar
  36. Sene JJ, Zeltner WA, Anderson MA (2007) Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and v-doped TiO2 thin-film electrode materials. J Phys Chem B 107:1597–1603CrossRefGoogle Scholar
  37. Shen X, Zhu L, Yu H, Tang H, Liu S, Li W (2009) Selective photocatalysis on molecular imprinted TiO2 thin films prepared via an improved liquid deposition method. New J Chem 33:1673–1679CrossRefGoogle Scholar
  38. Silva SWD, Bortolozzi JP, Banús ED, Bernardes AM, Ulla MA (2016) TiO2, thick films supported on stainless steel foams and their photoactivity in the nonylphenol ethoxylate mineralization. Chem Eng J 283:1264–1272CrossRefGoogle Scholar
  39. Wang D, He JH, Liu HY (2011) Preparation and properties of superhydrophobic composite coatings of SiO2 nanoparticals/silicone resin. Imag Sci Photochem 29:372–382Google Scholar
  40. Wang P, Guo X, Rao L, Wang C, Guo Y, Zhang L (2018) A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation. Environ Sci Pollut Res 25:20206–20216CrossRefGoogle Scholar
  41. Xiang H, Ge J, Cheng S, Han H, Cui S (2011) Synthesis and characterization of titania/mq silicone resin hybrid nanocomposite via sol–gel process. J Sol-Gel Sci Technol 59:635–639CrossRefGoogle Scholar
  42. Zhang X, Guan Y, Zhao Y, Zhang Z, Qiu D (2015) Reinforcement of silicone rubber with raspberry-like SiO2@polymer composite particles. Polym Int 64:992–998CrossRefGoogle Scholar
  43. Zhu ZS (2011) Synthesis and properties of polyester/SiO2/silicone composite coating. J South China Univ Technol 39:37–41Google Scholar
  44. Zuo W, Feng D, Song A, Gong H, Zhu S (2016) Effects of organic-inorganic hybrid coating on the color stability of denture base resins. J Prosthet Dent 115:103–108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lixin Zhang
    • 1
  • Lei Rao
    • 2
    Email author
  • Peifang Wang
    • 1
  • Xiang Guo
    • 1
  • Yuxiong Wang
    • 1
  1. 1.Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of EnvironmentHohai UniversityNanjingChina
  2. 2.College of Mechanics and MaterialsHohai UniversityNanjingChina

Personalised recommendations