Advertisement

Essential oils from Varronia curassavica (Cordiaceae) accessions and their compounds (E)-caryophyllene and α-humulene as an alternative to control Dorymyrmex thoracius (Formicidae: Dolichoderinae)

  • Bruna M. S. de Oliveira
  • Carlisson R. Melo
  • Ane C. C. Santos
  • Luis F. A. Nascimento
  • Daniela A. C. Nízio
  • Paulo F. Cristaldo
  • Arie F. Blank
  • Leandro BacciEmail author
Research Article
  • 24 Downloads

Abstract

The process of urbanization of natural environments has dramatically increased the incidence of pest insects. To control these organisms in urban environments, the last decades have been marked by an increase in the use of synthetic insecticides. However, the intensive and indiscriminate use of synthetic insecticides has provoked a series of environmental problems and human health. In this way, the concern and the searching for environmentally safer alternatives for the control of urban pests is increasing. In the present study we evaluated the lethal and sublethal effects of essential oils (EOs) of six accessions of Varronia curassavica (Jacq.) (Cordiaceae) and their constituents (E)-caryophyllene and α-humulene on the ant Dorymyrmex thoracicus Gallardo, 1916 (Formicidae: Dolichoderinae), a species commonly found in urban environments and which can cause damage to human health. Bioassays of fumigation toxicity and locomotor activity in partially treated arenas were performed. The lethal concentrations to kill 50% of the D. thoracicus population ranged from 0.69 to 2.48 μL/L for EOs and from 3.75 to 1.49 μL/L for the (E)-caryophyllene and α-humulene compounds. The survival of the ants exposed to LC95 of the treatments was reduced over time, ranging from 4.2 to 35.6 h to kill 50% of the D. thoracicus population. In general, EOs of V. curassavica caused repellency and affected the locomotor activity of the ants. Our results indicate that EOs of V. curassavica are a promising source for the control of the urban ant D. thoracicus.

Keywords

Bioinsecticides Urban pest Locomotor activity Terpenes Toxicity 

Notes

Acknowledgements

We thank Prof. Paulo C. L. Nogueira for his help in the identification of compounds.

Funding information

This study was financed in part by the Conselho Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq), Fundação de Apoio à Pesquisa e a Inovação Tecnológica do Estado de Sergipe (Fapitec/SE) - Brasil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES - Finance Code 001), and the Financiadora de Estudos e Projetos - Brasil (FINEP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adams RP (2007) Identification of essential oil components by gaschromatograpy/mass spectroscopy, 4th ed. Allured Publishing Corporation, Carol Stream, Illinois. p 804Google Scholar
  2. Albuquerque ED, Lima JKA, Souza FHO, Silva IMA, Santos AA, Araújo APA, Blank AF, Lima RN, Alves PB, Bacci L (2013) Insecticidal and repellence activity of the essential oil of Pogostemon cablin against urban ant species. Acta Trop 127:181–186CrossRefGoogle Scholar
  3. Benelli G, Govindarajan M, AlSalhi MS, Sandhanasamy D, Maggi F (2017) High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ Sci Pollut Res 25:10383–10391.  https://doi.org/10.1007/s11356-017-9490-7 CrossRefGoogle Scholar
  4. Benelli G, Govindarajan M, Rajeswary M, Vaseeharan B, Alyahya SA, Alharbi NS, Kadaikunnan S, Kladed JM, Maggi F (2018) Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the old-world bollworm, Helicoverpa armigera. Ecotoxicol Environ Saf 148:781–786CrossRefGoogle Scholar
  5. Brasil (2011) Agência Nacional de Vigilância Sanitária Formulário de Fitoterápicos da Farmacopéia Brasileira / Agência Nacional de Vigilância Sanitária Brasília: Anvisa 126p Available: http://www.anvisa.gov.br/hotsite/farmacopeiabrasileira/conteudo/Formulariode_Fitoterapicos_da_Farmacopeia_Brasileira.pdf. Accessed 13 May 2018. (Português)
  6. Bueno OC, Campos-Farinha AEC (1999) Formigas urbanas: Estratégias de controle. Vetores Pragas 2:5–7 (Português)Google Scholar
  7. Bueno OC, Campos AECC, Morini MSC (2017) Formigas em ambientes urbanos no Brasil / (Editores). Canal 6, Bauru (Português)Google Scholar
  8. Campos-Farinha AEC, Bueno OC (2004) Formigas urbanas: comportamento e controle. Campos-Farinha AEC, Bueno OC. Biológico 66:47–48 (Português)Google Scholar
  9. Campos-Farinha AEC, Bueno OC, Campos MCG, Kato LM (2002) As formigas urbanas no Brasil: Retrospecto. O Biológico 64:129–133 (Português)Google Scholar
  10. Carvalho PM Jr, Rodrigues RFO, Sawaya ACHF, Marques MOM, Shimizu MT (2004) Chemical composition and antimicrobial activity of the essential oil of Cordia verbenacea DC. J Ethopharmaco 95:297–301.  https://doi.org/10.1016/j.jep.2004.07.028 CrossRefGoogle Scholar
  11. Castro MM, Fernandes EF, Santos-Prezoto HH, Prezoto F (2014) Formigas em ambientes urbanos:importância e risco à saúde pública. Ces Revista 28:103–117Google Scholar
  12. Chauhan N, Malik A, Sharma S (2018) Repellency potential of essential oils against housefly, Musca domestica L. Environ Sci Pollut Res 25:4707–4714.  https://doi.org/10.1007/s11356-017-0363-x CrossRefGoogle Scholar
  13. Corrêa JCR, Salgado HRN (2011) Atividade inseticida das plantas e aplicações: revisão. Rev Bras Pl Med 13:500–506 (Português)CrossRefGoogle Scholar
  14. Cuezzo F, Guerrero RJ (2012) The ant genus Dorymyrmex Mayr (Hymenoptera: Formicidae: Dolichoderinae) in Colombia. Psyche 2012:1–24CrossRefGoogle Scholar
  15. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpenes ynthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637.  https://doi.org/10.1016/j.phytochem.2009.07.030 CrossRefGoogle Scholar
  16. Ehlert PAD, Blank AF, Arrigoni-Blank MF, Paula JWA, Campos DA, Alviano CS (2006) Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Rev Bras Plantas Med 8:79–80 (Português)Google Scholar
  17. Feijó EVRS, Oliveira RA, Costa LCB (2014) Light affects Varronia curassavica essential oil yield by increasing trichomes frequency. Rev Bras Farmacogn 24:516–523CrossRefGoogle Scholar
  18. Feitosa-Alcantara RB, Bacci L, Blank AF, Alves PB, Silva IMA, Soares CA, Sampaio TS, Nogueira PCL, Arrigoni-Blank MF (2017) Essential oils of Hyptis pectinata Chemotypes: isolation, binary mixtures and acute toxicity on leaf-cutting ants. Molecules 22:621.  https://doi.org/10.3390/molecules22040621 CrossRefGoogle Scholar
  19. Fernandes ES, Passos GF, Medeiros R, Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB (2007) Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236.  https://doi.org/10.1016/j.ejphar.2007.04.059 CrossRefGoogle Scholar
  20. Fonseca AR, Batista DR, Amaral DP, Campos RBF, Silva CG (2010) Formigas (Hymenoptera: Formicidae) urbanas em um hospital no município de Luz, Estado de Minas Gerais. Act Sci Health Sciences 32:29–34.  https://doi.org/10.4025/actascihealthsci.v32i1.5805 (Português)CrossRefGoogle Scholar
  21. Gasparino EC, Barros MAVC (2009) Palinotaxonomia das espécies de Cordiaceae (Boraginales) ocorrentes no Estado de São Paulo. Braz J Bot, São Paulo 32:33–55.  https://doi.org/10.1590/S0100-84042009000100005 (Português)CrossRefGoogle Scholar
  22. Gilbert B, Favoreto R (2012) Cordia verbenacea DC Boraginaceae. Revista Fitos 7:17–25 (Português)Google Scholar
  23. Gobbo-Neto L, Lopes NP (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quím Nova 30:374–381 (Português)CrossRefGoogle Scholar
  24. Goneli ALD, Nasu AK, Gancedo R, Araújo WD, Sarath KLL (2014) Cinética de secagem de folhas de erva baleeira (Cordia verbenacea DC.). Rev Bras Pl Med 16:434–443.  https://doi.org/10.1590/1983-084X/13_041 (Português)CrossRefGoogle Scholar
  25. Gonzaga AD, Garcia MVBG, Sousa SGA, Py-Daniel V, Correa RS, Ribeiro JD (2008) Toxicity of cassava manipueira (Manihot esculenta Crantz) and erva-de-rato (Palicourea marcgravii St. hill) to adults of Toxoptera citricida Kirkaldy (Homoptera: Aphididae). Acta Amazon 38:101–106CrossRefGoogle Scholar
  26. Govindarajan M, Benelli G (2016) α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115:2771–2778CrossRefGoogle Scholar
  27. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  28. Isman MB (2006) Botanical insecticides, deterrents, and repellents inmodern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66.  https://doi.org/10.1146/annurev.ento.51.110104.151146 CrossRefGoogle Scholar
  29. Knaak N, Fiuza LM (2010) Potential of essential plant oils to control insects and microorganisms. Neotropical Biol Conserv 5:120–132.  https://doi.org/10.4013/nbc.2010.52.08 CrossRefGoogle Scholar
  30. Lutinski JA, Lopes BC, Morais ABB (2013) Urban ant diversity (Hymenoptera: Formicidae) in ten cities of southern Brazil. Biota Neotrop 13(3):332. (Português)–342CrossRefGoogle Scholar
  31. Máximo HJ, Felizatti HL, Ceccato M, Cintra-Socolowski P, Beretta ALRZ (2014) Ants as vectors of pathogenic microorganisms in a hospital in São Paulo county, Brazil. BMC Research Notes 7:554.  https://doi.org/10.1186/1756-0500-7-554 CrossRefGoogle Scholar
  32. Meccia G, Rojas LB, Velasco J, Díaz T, Usubillaga A, Arzola JC, Ramos S (2009) Chemical composition and antibacterial activity of the essential oil of Cordia verbenacea from the Venezuelan Andes. Nat Prod Commun 4:1119–1122Google Scholar
  33. Medeiros R, Passos GF, Vitor CE, Mazzuco TL, Pianowski LF, Campos MM, Calixto JB (2007) Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Brit J Pharmacol 151:618–627CrossRefGoogle Scholar
  34. Melo CR, Picanço MP, Santos AA, Santos IB, Pimentel MP, Santos ACC, Blank AF, Araújo APA, Cristaldo PF, Bacci L (2018) Toxicity of essential oils of Lippia gracilis chemotypes and their majorcompounds on Diaphania hyalinata and non-target species. Crop Prot 104:47–51.  https://doi.org/10.1016/j.cropro.2017.10.013 CrossRefGoogle Scholar
  35. Mossa ATH (2016) Green pesticides: essential oils as biopesticides in insect-pest management. J Environ Sci Technol 9:354–378.  https://doi.org/10.3923/jest.2016.354.378 CrossRefGoogle Scholar
  36. Nízio DAC, Brito FA, SampaioTS MJO, Silva FLS, Gagliardi PR, Arrigoni-Blank MF, Anjos CS, Alves PB, Wisniewski Júnior A, Blank AF (2015) Chemical diversity of native populations of Varronia curassavica Jacq. And antifungal activity against Lasiodoplodia theobromae. Indus Crops Prod 46:437–448.  https://doi.org/10.1016/j.indcrop.2015.07.026 CrossRefGoogle Scholar
  37. Nizio DAC, Fujimoto RY, Maria AN, Carneiro PCF, França CCS, Sousa NC, Brito FA, Sampaio TS, Arrigoni-Blank MF, Blank AF (2018) Essential oils of Varronia curassavica accessions have different activity against white spot disease in freshwater fish. Parasitology Res 117:97–105.  https://doi.org/10.1007/s00436-017-5673-x CrossRefGoogle Scholar
  38. Oliveira BMS, Melo CR, Alves PB, Santos AA, Santos ACC, Santana ASS, Araújo APA, Nascimento PES, Blank AF, Bacci L (2017a) Essential oil of Aristolochia trilobata:synthesis, routes of exposure, acute toxicity, binary Mixturesand behavioral effects on leaf-cutting ants. Molecules 22:335.  https://doi.org/10.3390/molecules22030335 CrossRefGoogle Scholar
  39. Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, Lima AD, Blank AF, Araújo APA, Cristaldo PF, Bacci L (2017b) Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Indus Crops Prod 107:198–205.  https://doi.org/10.1016/j.indcrop.2017.05.046 CrossRefGoogle Scholar
  40. Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana EDR, Sampaio TS, Blank AF, Araújo APA, Cristaldo PF, Bacci L (2018) Essential oil of Lippia sidoides and its major compound thymol: toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot 112:33–38.  https://doi.org/10.1016/j.cropro.2018.05.011 CrossRefGoogle Scholar
  41. Passos GF, Fernandes ES, Cunha FM, Ferreira J, Pianowski LF, Campos MM, Calixto JB (2007) Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J Ethnopharmacol 110:323–333.  https://doi.org/10.1016/j.jep.2006.09.032 CrossRefGoogle Scholar
  42. Pavela R (2018) Essential oils from Foeniculum vulgare miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ Sci Pollut Res 25:10904–10910.  https://doi.org/10.1007/s11356-018-1398-3 CrossRefGoogle Scholar
  43. Peixoto MG, Bacci L, Blank AF, Araújo APA, Alves PB, Silva JHS, Santos AA, Oliveira AP, Costa AS, Arrigoni-Blank MF (2015b) Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Indus Crops Prod 71:31–36.  https://doi.org/10.1016/j.indcrop.2015.03.084 CrossRefGoogle Scholar
  44. Pesquero MA, Filho JE, Carneiro LC, Feitosa SB, Oliveira MAC, Quintana RC (2008) Formigas em ambiente hospitalar e seu potencial como transmissoras de bactérias. Neotrop Entomol 37:472–477 (Português)CrossRefGoogle Scholar
  45. Pinho L, Souza PNS, Sobrinho EM, Almeida AC, Martins ER (2012) Atividade antimicrobiana de extratos hidroalcoolicos das folhas de alecrim-pimenta, aroeira, barbatimão, erva-baleeira e do farelo da casca de pequi. Cienc Rural 42:326–331.  https://doi.org/10.1590/S0103-84782012005000003 (Português)CrossRefGoogle Scholar
  46. Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored-product insect control. J Stored Prod Res 44:126–135.  https://doi.org/10.1016/j.jspr.2007.08.003 CrossRefGoogle Scholar
  47. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920.  https://doi.org/10.1016/j.cropro.2010.05.008 CrossRefGoogle Scholar
  48. Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes word. Annu Rev Entomol 57:405–424.  https://doi.org/10.1146/annurev-ento-120710-100554 CrossRefGoogle Scholar
  49. Rocha AG, Melo CR, Sampaio TS, Blank AF, Lima AD, Nunes RS, Araújo APA, Cristaldo PF, Bacci L (2018) Lethal effect and behavioral responses of leaf-cutting antsto essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop Entomol 47:769–779.  https://doi.org/10.1007/s13744-018-0615-6 CrossRefGoogle Scholar
  50. Rodrigues FFG, Oliveira LGS, Rodrigues FFG, Saraiva ME, Almeida SCX, Cabral MES, Campos AR, Costa JGM (2012) Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves. Pharm Res 4:161–165.  https://doi.org/10.4103/0974-8490.99080 CrossRefGoogle Scholar
  51. Roldão EF, Witaicenis A, Seito LN, Hiruma-Lima CA, Di Stasi LC (2008) Evaluation of the antiulcerogenic and analgesic activities of Cordia verbenacea DC (Boraginaceae). J Ethnopharmacol 119:94–98.  https://doi.org/10.1016/j.jep.2008.06.001 CrossRefGoogle Scholar
  52. Sant’ana TCP, Blank AF, Vieira SD, Arrigoni-Blank MF, Jesus HCR, Alves PB (2010) Influência do armazenamento de folhas secas no óleo essencial de patchouli (Pogostemon cablin BENTH). Quim Nova 33:1263–1265 (Português)CrossRefGoogle Scholar
  53. Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER, Pessoa ODL (2006) Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the northeast of Brazil. J Braz Chem Soc 17:1027–1030.  https://doi.org/10.1590/S0103-50532006000500030 CrossRefGoogle Scholar
  54. Santos AA, Oliveira BMS, Melo CR, Lima APS, Santana EDR, Blank AF, Picanço MC, Araújo APAA, Cristaldo PF, Bacci L (2017) Sub-lethal effects of essential oil of Lippia sidoides on drywood térmite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicol Environ Saf 145:436–441.  https://doi.org/10.1016/j.ecoenv.2017.07.057 CrossRefGoogle Scholar
  55. Santos ACC, Cristaldo PF, Araújo APA, Melo CR, Lima APS, Santana EDR, Oliveira BMS, Oliveira JWS, Vieira JS, Blank AF, Bacci L (2018) Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: a oneway ticket? Bioinsecticides can be an alternative. Ecotoxicol Environ Saf 163:28–36.  https://doi.org/10.1016/j.ecoenv.2018.07.048 CrossRefGoogle Scholar
  56. SAS Institute (2004) SAS/STAT 9.1 User’s Guide. Cary, North CarolinaGoogle Scholar
  57. SigmaPlot (2008) For windows, version 11.0. Systat SoftwareGoogle Scholar
  58. Silva AC, Souza PE, Resende MLV, Silva MB Jr, Ribeiro PM Jr, Zeviani WM (2014) Local and systemic control of powdery mildew in eucalyptus using essential oils and decoctions from traditional Brazilian medicinal plants. For Pathol 44:145–153.  https://doi.org/10.1111/efp.12079 CrossRefGoogle Scholar
  59. Silva IMA, Martins GF, Melo CR, Santana AS, Faro RRN, Blank AF, Alves PB, Picanço MC, Cristaldo PF, Araújo APA, Bacci L (2018) Alternative control of Aedes aegypti resistant to pyrethroids: lethal and sublethal effects of monoterpenes bioinsecticides. Pest Manag Sci 74:1001–1012.  https://doi.org/10.1002/ps.4801 CrossRefGoogle Scholar
  60. Stanojevic JS, Stanojevic LP, Cvetkovic DJ, Danilovic BR (2015) Chemical composition, antioxidant and antimicrobial activity of the turmeric essential oil (Curcuma longa L.). Adv Technol 4:19–25CrossRefGoogle Scholar
  61. St-Gelais A, Mathieu M, Levasseur V, Ovandro JF, Escamilla R, Marceau H (2016) Preioscalamendiol, shyobunol and related oxygenated sesquiterpenes from Bolivian Schinus molle essential oil. Nat Prod Commun 11:547–550Google Scholar
  62. Tak JH, Jovel E, Isman MB (2015) Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. Pest Manag Sci 89:183–193.  https://doi.org/10.1007/s10340-015-0655-1 CrossRefGoogle Scholar
  63. Testolin RC, Tischer V, Lima AOS, Cotelle S, Férard JF, Radetski CM (2012) Aquatic ecotoxicity assessment of a new natural formicide. Environ Sci Pollut Res 19:2186–2194.  https://doi.org/10.1007/s11356-011-0721-z CrossRefGoogle Scholar
  64. van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 463–471Google Scholar
  65. Yang P, Yajun MA, Zheng S (2005) Adulticidal activity of five essential oils against Culex pipiens quinquefasciatus. J Pestic Sci 30:84–89CrossRefGoogle Scholar
  66. Zhu BCR, Henderson G, Yu Y, Laine RA (2003) Toxicity and repellency of patchouli oil and patchouli alcohol against formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Agric Food Chem 51:4585–4588CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bruna M. S. de Oliveira
    • 1
  • Carlisson R. Melo
    • 1
  • Ane C. C. Santos
    • 1
  • Luis F. A. Nascimento
    • 1
  • Daniela A. C. Nízio
    • 1
  • Paulo F. Cristaldo
    • 2
  • Arie F. Blank
    • 1
  • Leandro Bacci
    • 1
    Email author return OK on get
  1. 1.Universidade Federal de Sergipe, Cidade Universitária Professor José Aloísio de CamposSão CristóvãoBrazil
  2. 2.Programa de Pós-Graduação em Entomologia Agrícola, Departamento de AgronomiaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations