Ecotoxicological assessment of Fluazuron: effects on Folsomia candida and Eisenia andrei

  • Paulo Roger Lopes AlvesEmail author
  • Felipe Ogliari Bandeira
  • Maicon Giraldi
  • Rosicler Presotto
  • Julia Corá Segat
  • Elke Jurandy Bran Nogueira Cardoso
  • Dilmar Baretta
Research Article


The cattle production in Brazil has increased considerably in the last years, mainly due to the control of parasite infestation of the animals, which cause loss of productivity to the sector. Fluazuron is an active ingredient (a.i.) of the benzoylurea class used to control ticks in cattle. As this a.i. has been found unchanged in animal feces, which may present a risk to edaphic organisms, this study aimed to assess the effects of fluazuron on survival, reproduction, and behavior of the soil invertebrates Folsomia candida and Eisenia andrei, through ecotoxicological assays. We carried out bioassays in a tropical artificial soil (TAS) spiked with increasing doses of the insecticide. Earthworm mortality was found only at the highest tested fluazuron concentration (LOEC = 160 mg a.i. kg−1 dry soil and NOEC = 80 mg kg−1), while the reproduction of F. candida and E. andrei was reduced at lower fluazuron concentrations (EC50 = 4.48 mg kg−1 and EC50 = 20.8 mg kg−1, respectively). Avoidance behavior was detected for both species at lower concentrations than those that caused impacts on reproduction, indicating that the substance may affect the soil habitat function. Since the possible adverse effects of fluazuron on edaphic fauna are still unknown or neglected, this study also warns about the possible harmful effect of veterinary pharmaceutical products on edaphic fauna.


Soil fauna Earthworms Springtails Veterinary pharmaceuticals Benzoylureas 



The authors would like to thank the anonymous ESPR reviewers for their helpful and constructive comments that greatly contributed to improving the final version of this paper. The authors also thank the Centro de Educação Superior do Oeste of the Santa Catarina State University for the research opportunity.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services - a global review. Geoderma 262:101–111CrossRefGoogle Scholar
  2. Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2014) Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotoxicol Environ Saf 105:65–71CrossRefGoogle Scholar
  3. Alves PRL, Natal-Da-Luz T, Sousa JP, Cardoso EJBN (2015) Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils. Sci Total Environ 526:222–232CrossRefGoogle Scholar
  4. Araya-Anchetta A, Busch JD, Scoles GA, Wagner DM (2015) Thirty years of tick population genetics: a comprehensive review. Infect Genet Evol 29:164–179CrossRefGoogle Scholar
  5. Campiche S, Becker-Van SK, Ridreau C, Tarradellas J (2006) Effects of insect growth regulators on the nontarget soil arthropod Folsomia candida (Collembola). Ecotoxicol Environ Saf 63:216–225CrossRefGoogle Scholar
  6. Campiche S, L’Ambert G, Tarradellas J, Becker-van SK (2007) Multigeneration effects of insect growth regulators on the springtail Folsomia candida. Ecotoxicol Environ Saf 67:180–189CrossRefGoogle Scholar
  7. CQFS RS/SC - Comissão de Química e Fertilidade do Solo (2004) Manual de adubação e de calagem para os Estados do Rio Grande do Sul e de Santa Catarina, 10th edn. Sociedade Brasileira de Ciência do Solo, Porto Alegre 400pGoogle Scholar
  8. Daam MA, Leitão S, Cerejeira MJ, Sousa JP (2011) Comparing the sensitivity of soil invertebrates to pesticides with that of Eisenia fetida. Chemosphere 85:1040–1047CrossRefGoogle Scholar
  9. De Silva PMCS, Van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere 77:1609–1613CrossRefGoogle Scholar
  10. Dourmishev AL, Schwartz RA (2005) Ivermectin: pharmacology and application in dermatology. Int J Dermatol 44:981–988CrossRefGoogle Scholar
  11. EC (2003) Technical guidance document on risk assessment, in support of commission directive 93/67/EEC, commission regulation (EC) no 1488/94 and directive 98/8/EC. European Commission Joint Research CenterGoogle Scholar
  12. Environmental Canada (2007) Guidance document on statistical methods for environmental toxicity test. Environmental Protection Series, EPS 1/RM/46, 2005 with 2007 updates. Environmental Canada, OttawaGoogle Scholar
  13. FAO - Food and Agriculture Organization of the United Nations (1998) Residues of some veterinary drugs in animals and foods. Available at: < >. Accessed 15 August 2018
  14. Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van der Brink P (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489CrossRefGoogle Scholar
  15. Franco FC, Alves AA, Godoy FR, Avelar JB, Rodrigues DD, Pedroso TMA, deCruz AD, Nomura F, de Melo e Silva D (2016) Evaluating genotoxic risks in Brazilian public health agents occupationally exposed to pesticides: a multi-biomarker approach. Environ Sci Pollut Res 23(19):19723–19734CrossRefGoogle Scholar
  16. Furlong J (2005) Carrapato: problemas e soluções. Embrapa Gado de Leite. Juiz de Fora – MG, 65 p. Avaliable at: <>. Accessed 15 August 2018
  17. Gangishetti U, Breitenbach S, Zander M, Saheb SK, Müller U, Schwarz H, Moussian B (2009) Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur J Cell Biol 88:167–180CrossRefGoogle Scholar
  18. Garcia MVB (2004) Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. Ecology and Development Series, vol. 19. University of Bonn, GermanyGoogle Scholar
  19. Hsiao Y, Ho W, Yen J (2013) Vertical distribution in soil column and dissipation in soil of benzoylurea insecticides diflubenzuron, flufenoxuron and novaluron and effect on the bacterial community. Chemosphere 90:380–386CrossRefGoogle Scholar
  20. ISO (1993) International organization for standardization - 11268-1. Soil quality - effects of pollutants on earthworms (Eisenia fetida) - Part 1: Determination of acute toxicity using soil substrate. Genève, 26 pGoogle Scholar
  21. ISO (2008) International organization for standardization - 17512-1. Soil quality - avoidance test for determining the quality of soils and effects of chemicals on behavior – Part 1: test with earthworms (Eisenia fetida and Eisenia andrei). Genève, 26 pGoogle Scholar
  22. ISO (2011) International organization for standardization - 17512-2. Soil quality - avoidance test for determining the quality of soils and effects of chemicals on behavior – Part 2: test with collembolans (Folsomia candida). Genève, 13 pGoogle Scholar
  23. ISO (2012) International standardization organization - 11268-2. Soil quality - effects of pollutants on earthworms - Part 2: Determination of effects on reproduction of Eisenia fetida/Eisenia andrei. Genève, 24 pGoogle Scholar
  24. ISO (2014) International standardization organization – 11267. Soil quality - inhibition of reproduction of Collembola (Folsomia candida) by soil contaminants. Genève, 27 pGoogle Scholar
  25. Kryger U, Deschodt C, Scholtz CH (2005) Effects of fluazuron and ivermectin treatment of cattle on the structure of dung beetle communities. Agric Ecosyst Environ 105:649–656CrossRefGoogle Scholar
  26. Kryger U, Deschodt C, Davis ALV, Scholtz CH (2007) Effects of cattle treatment with a fluazuron pour-on on survival and reproduction of the dung beetle species Onthophagus gazella (Fabricius). Vet Parasitol 143:380–384CrossRefGoogle Scholar
  27. Maccari AP, Baretta D, Paiano D, Leston S, Freitas A, Ramos F, Sousa JP, Klauberg-Filho O (2016) Ecotoxicological effects of pig manure on Folsomia candida in subtropical Brazilian soils. J Hazard Mater 314:113–120CrossRefGoogle Scholar
  28. Mapholi NO, Marufu MC, Maiwashe A, Banga CB, Muchenje V, MacNeil MD, Chimonyo M, Dzama K (2014) Towards a genomics approach to tick (Acari: Ixodidae) control in cattle. Ticks Tick-Borne Dis 5:475–483CrossRefGoogle Scholar
  29. Nasr HM, Badawy ME (2015) Biomarker response and biomass toxicity of earthworms Aporrectodea caliginosa exposed to IGRs pesticides. J Environ Anal Toxicol 5:332CrossRefGoogle Scholar
  30. National Registration Authority for Agricultural and Veterinary Chemicals (NRA) (1994) Fluazuron in the product Acatak pouron tick development inhibitor. Public Release Summary. NRA, CanberraGoogle Scholar
  31. Niva CC, Niemeyer JC, Da Silva Junior FMR, Nunes MET, De Sousa DL, Aragão CWS, Sautter KD, Espindola EG, Sousa JP, Römbke J (2016) Soil ecotoxicology in Brazil is taking its course. Environ Sci Pollut Res 23:11363–11378CrossRefGoogle Scholar
  32. OECD (1984) Guideline for testing chemicals, no. 207. Earthworm acute toxicity test. OECD Document, Organisation for Economic Co-Operation and Development. Paris, 9 pGoogle Scholar
  33. Oliveira PR, Calligaris IB, Roma GC, Bechara GH, Pizano MA, Mathias MIC (2012) Potential of the insect growth regulator, fluazuron, in the control of Rhipicephalus sanguineus nymphs (Latreille, 1806) (Acari: Ixodidae). Exp Parasitol 131:35–39CrossRefGoogle Scholar
  34. Oliveira PR, Calligaris IB, Nunes PH, Bechara GH, Camargo-Mathias MI (2014) Fluazuron-induced morphological changes in Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) nymphs. Acta Trop 133:45–55CrossRefGoogle Scholar
  35. Peijnenburg W, Capri E, Kula C, Liess M, Luttik R, Montforts M, Nienstedt K, Römbke J, Sousa JP, Jensen J (2012) Evaluation of exposure metrics for effect assessment of soil invertebrates. Crit Rev Env Sci Tec 42:1862–1893CrossRefGoogle Scholar
  36. Pereira CMS, Novais SC, Soares AMVM, Amorim MJB (2013) Dimethoate affects cholinesterases in Folsomia candida and their locomotion - false negative results of an avoidance behaviour test. Sci Total Environ 443:821–827CrossRefGoogle Scholar
  37. Piwoni M, Keeley J (1990) Basic concepts of contaminant sorption at hazardous waste sites. US Environ Prot Agency Document EPA/540/4-90/053, 7 pGoogle Scholar
  38. Roberts TR, Hutson DH (1999) Metabolic pathways of agrochemicals: part 2: insecticides and fungicides. Royal Society of Chemistry, Cambridge, 1475 pGoogle Scholar
  39. Rugno GR, Zanardi OZ, Cuervo JB, Morais MR, Yamamoto PT (2016) Impact of insect growth regulators on the predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae). Ecotoxicology 25:940–949CrossRefGoogle Scholar
  40. Sakuma M (1999) Probit analisys of preference data. Appl Entomol Zool 8:339–347Google Scholar
  41. Segat JC, Alves PRL, Baretta D, Cardoso EJBN (2015) Ecotoxicological evaluation of swine manure disposal on tropical soils in Brazil. Ecotoxicol Environ Saf 122:91–97CrossRefGoogle Scholar
  42. Sousa A, Pereira R, Antunes SC, Cachada A, Pereira E, Duarte AC, Gonçalves F (2008) Validation of assays for the screening assessment of soils under different anthropogenic disturbances. Ecotoxicol Environ Saf 71:661–670CrossRefGoogle Scholar
  43. Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128CrossRefGoogle Scholar
  44. Willers CD, Maranduba HL, de Almeida Neto JA, Rodrigues LB (2017) Environmental impact assessment of a semi-intensive beef cattle production in Brazil’s northeast. Int J Life Cycle Assess 22:516–524CrossRefGoogle Scholar
  45. Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131:85–95CrossRefGoogle Scholar
  46. Zar JH (1999) Biostatistical analysis. Prentice Hall International, London, 663 pGoogle Scholar
  47. Zortéa T, Segat JC, Maccari AP, Sousa JP, Da Silva AS, Baretta D (2017) Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia candida in tropical soils. Chemosphere 173:460–465CrossRefGoogle Scholar
  48. Zortéa T, Da Silva AF, Dos Reis TR, Segat JC, Paulino AT, Sousa JP, Baretta D (2018) Ecotoxicological effects of fipronil, neem cake and neem extract in edaphic organisms from tropical soil. Ecotoxicol Environ Saf 166:207–214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paulo Roger Lopes Alves
    • 1
    Email author
  • Felipe Ogliari Bandeira
    • 2
  • Maicon Giraldi
    • 1
  • Rosicler Presotto
    • 1
  • Julia Corá Segat
    • 3
  • Elke Jurandy Bran Nogueira Cardoso
    • 4
  • Dilmar Baretta
    • 3
  1. 1.Federal University of Fronteira SulChapecóBrazil
  2. 2.Department of Soil ScienceSanta Catarina State UniversityLagesBrazil
  3. 3.Centro de Educação Superior do OesteSanta Catarina State UniversityChapecóBrazil
  4. 4.Department of Soil ScienceUniversity of São PauloPiracicabaBrazil

Personalised recommendations