Oxythermal window drastically constraints the survival and development of European sturgeon early life phases

  • Nicolas Delage
  • Blandine Couturier
  • Philippe Jatteau
  • Thibaut Larcher
  • Mireille Ledevin
  • Hélicia Goubin
  • Jérôme Cachot
  • Eric RochardEmail author
Multi-Stressors in Freshwater and Transitional Environments: from Legacy Pollutants to Emerging Ones


European sturgeon Acipenser sturio is an anadromous fish species being classified “critically endangered” with only one remaining population in the Gironde-Garonne-Dordogne basin (France). In the global warming context, this paper aims to determine the sensitivity of A. sturio early life phases to temperature and oxygen saturation. Embryos were experimentally exposed to a combination of temperature (12 to 30 °C) and oxygen (30 to 90% O2 saturation) conditions. Lethal and sublethal effects were evaluated using embryonic mortality, hatching success, malformation rate, yolk sac resorption, tissue development and swimming speed. Embryonic survival peaked at 20 °C and no survival was recorded at 30 °C regardless of the associated oxygen saturation. No hatching occurred at 50% O2 sat or below regardless of temperature. Malformation frequency appeared to be minimum at 20 °C and 90% O2 sat. Swimming speed peaked at 16 °C. The temperature optimum of early life phases of A. sturio was determined to be close to 20 °C. Its upper tolerance limit is between 26 and 30 °C and its lower tolerance limit is below 12 °C. Oxygen depletion induces sublethal effects at 70% O2 sat and lethal effects at 50% O2 sat. Within the spawning period in the Gironde-Garonne-Dordogne basin, we identified yearly favourable oxythermal windows. Consequences of climate change would depend of the phenological adaptation of the species for its spawning period.


Sturgeon Temperature Oxygen Behaviour Development Mortality Global warming 



This study was carried out as part of the Cluster of Excellence COTE. Temperature and Oxygen data from the field were provided by the NGO Migrateurs Garonne Dordogne (MIGADO) ( and the consortium MAGEST. The English has been revised by James Emery. Thanks to David Mc Kenzie and Patrick Kestemont for reviewing a previous version of this text in the PhD manuscript of Nicolas Delage and two anonymous reviewers.

Funding information

This study was funded by the Région Aquitaine, IRSTEA and the French National Research Agency (SturTOP research project No. ANR-13-CESA-0018-01).


  1. Abe T, Sakamoto T (2011) Embryonic development and larval behavior of the kissing loach (Parabotia curta): adaptations to an ephemeral, hypoxic environment. Ichthyol Res 58:238–244CrossRefGoogle Scholar
  2. Acolas ML, Castelnaud G, Lepage M, Rochard E (2011) Chapter 10 biological cycle and migrations. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L., 1758. Springer, Berlin Heidelberg, pp 147-152Google Scholar
  3. Burggren WW, Pinder AW (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol 53:107–135CrossRefGoogle Scholar
  4. Caballero Y, Voirin-Morel S, Habets F, Noilhan J, LeMoigne P, Lehenaff A, Boone A (2007) Hydrological sensitivity of the Adour-Garonne river basin to climate change. Water Resour Res 43:19Google Scholar
  5. Claireaux G, Lefrançois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos Trans R Soc Lond B Biol Sci 362:2031–2041CrossRefGoogle Scholar
  6. Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782CrossRefGoogle Scholar
  7. Dalla Via J, Van Den Thillart G, Cattani O, Cortesi P (1998) Behavioural responses and biochemical correlates in Solea solea to gradual hypoxic exposure. Can J Zool 76:2108–2113CrossRefGoogle Scholar
  8. Darias MJ, Lan Chow Wing O, Cahu C, Zambonino-Infante JL, Mazurais D (2010) Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. J Appl Ichthyol 26:280–285CrossRefGoogle Scholar
  9. Delage N, Cachot J, Fraty R, Jatteau P (2014) Hypoxia tolerance of European sturgeon (Acipenser sturio L., 1758) young stages at two temperatures. J Appl Ichthyol 30:1195–1202CrossRefGoogle Scholar
  10. Detlaf TA, Ginzburg TA, Shmal’gauzen OI (1981) Development of sturgeon: egg maturation, fertilization, embryonic and prelarval development. Nauka Publishers, MoscowGoogle Scholar
  11. Detlaf TA, Ginzburg AS, Shmal'gauzen OI (1993) Sturgeon fishes: developmental biology and aquaculture. Springer-Verlag, BerlinCrossRefGoogle Scholar
  12. Domenici P, Lefrançois C, Shingles A (2007) Hypoxia and the antipredator behaviours of fishes. Philos Trans R Soc Lond B Biol Sci 362:2105–2121CrossRefGoogle Scholar
  13. Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77:1793–1817CrossRefGoogle Scholar
  14. Elshout PMF, Dionisio Pires LM, Leuven RSEW, Wendelaar Bonga SE, Hendricks AJ (2013) Low oxygen tolerance of different life stages of temperate freshwater fish species. J Fish Biol 83:190–206CrossRefGoogle Scholar
  15. Fry FEJ (1971) Fish physiology. Academic press, New YorkGoogle Scholar
  16. Gisbert E, Cech JJ Jr, Doroshov SI (2002) Routine metabolism of larval green sturgeon (Acipenser medirostris Ayres). Fish Physiol Biochem 25:195–200CrossRefGoogle Scholar
  17. Hassell KL, Coutin PC, Nugegoda D (2008a) Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar Pollut Bull 57:302–306CrossRefGoogle Scholar
  18. Hassell KL, Coutin PC, Nugegoda D (2008b) Hypoxia, low salinity and lowered temperature reduce embryo survival and hatch rates in black bream Acanthopagrus butcheri (Munro, 1949). J Fish Biol 72:1623–1636CrossRefGoogle Scholar
  19. IPCC (2013) Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, pp. 3–29.
  20. Jego S, Gazeau C, Jatteau P, Elie P, Rochard E (2002) Les frayères potentielles de l'esturgeon européen Acipenser sturio L. 1758 dans le bassin Garonne-Dordogne. Méthodes d'investigation, état actuel et perspectives. Bull Fr Peche Piscic 365-366:487–505CrossRefGoogle Scholar
  21. Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212:1781–1793CrossRefGoogle Scholar
  22. Kappenman KM, Webb MAH, Greenwood M (2013) The effect of temperature on embryo survival and development in pallid sturgeon Scaphirhynchus albus (Forbes & Richardson 1905) and shovelnose sturgeon S. platorynchus (Rafinesque, 1820). J Appl Ichthyol 29:1193–1203CrossRefGoogle Scholar
  23. Kieffer JD, Baker DW, Wood AM, Papadopoulos CN (2011) The effects of temperature on the physiological response to low oxygen in Atlantic sturgeon. Fish Physiol Biochem 37:809–819CrossRefGoogle Scholar
  24. Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol 28:651–658CrossRefGoogle Scholar
  25. Killen SS, Reid D, Marras S, Domenici P (2015) The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise. Front Physiol 6:111CrossRefGoogle Scholar
  26. Kovacs TG, Martel PH, Voss RH (2002) Assessing the biological status of fish in a river receiving pulp and paper mill effluents. Environ Pollut 118:123–140CrossRefGoogle Scholar
  27. Lanoux A, Etcheber H, Schmidt S, Sottolichio A, Chabaud G, Richard M, Abril G (2013) Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France). Environ Sci Processes Impacts 15:585–595CrossRefGoogle Scholar
  28. Larnier K, Roux H, Dartus D, Croze O (2010) Water temperature modeling in the Garonne River (France). Knowl Manag Aquat Ecosyst 398:20Google Scholar
  29. Lassalle G, Crouzet P, Gessner J, Rochard E (2010) Global warming impacts and conservation responses for the critically endangered European Atlantic sturgeon. Biol Conserv 143:2441–2452CrossRefGoogle Scholar
  30. Lefrançois C, Domenici P (2006) Locomotor kinematics and behaviour in the escape response of European sea bass, Dicentrarchus labrax L., exposed to hypoxia. Mar Biol 149:969–977CrossRefGoogle Scholar
  31. Lepage, M. & Rochard, E. (2011). Chapter 22 fishery by-catch of European sturgeon in the Bay of Biscay. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L., 1758. Springer, Berlin Heidelberg, pp 335-342Google Scholar
  32. Lo KH, Hui MNY, Yu RMK, Wu RSS, Cheng SH (2011) Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos. PLoS One 6:e24540CrossRefGoogle Scholar
  33. Magnin E (1962) Recherches sur la systématique et la biologie des Acipenséridés. Annales de la Station Centrale d'Hydrobiologie Appliquée 9:7–242Google Scholar
  34. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜBler K, Bissolli P, BraslavskÁ OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  35. Mueller CA, Joss JMP, Seymour RS (2011) The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri. J Comp Physiol B 181:43–52CrossRefGoogle Scholar
  36. Mustafa SA, Al-Subiai SN, Davies SJ, Jha AN (2011) Hypoxia-induced oxidative DNA damage links with higher level biological effects including specific growth rate in common carp, Cyprinus carpio L. Ecotoxicology 20:1455–1466CrossRefGoogle Scholar
  37. Nicholson G, Jenkins GP, Sherwood J, Longmore A (2008) Physical environmental conditions, spawning and early-life stages of an estuarine fish: climate change implications for recruitment in intermittently open estuaries. Mar Freshw Res 59:735–749CrossRefGoogle Scholar
  38. Pörtner H (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146CrossRefGoogle Scholar
  39. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefGoogle Scholar
  40. Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619CrossRefGoogle Scholar
  41. Rochard E (2011) Chapter 18 present legal status of the European sturgeon Acipenser sturio. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L., 1758. Springer, Berlin Heidelberg, pp 251-256Google Scholar
  42. Rochard E, Castelnaud G, Lepage M (1990) Sturgeons (Pisces: Acipenseridae); threats and prospects. J Fish Biol 37:123–132CrossRefGoogle Scholar
  43. Rochard E, Lepage M, Meauze L (1997) Identification et caractérisation de l'aire de répartition marine de l’esturgeon européen Acipenser sturio à partir de déclarations de captures. Aquat Living Resour 10:101–109CrossRefGoogle Scholar
  44. Rochard E, Lepage M, Dumont P, Tremblay S, Gazeau C (2001) Downstream migration of juvenile European sturgeon Acipenser sturio L. in the Gironde estuary. Estuaries 24:108–115CrossRefGoogle Scholar
  45. Rombough PJ (1988) 2 Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early life. Fish Physiol 11:59–161CrossRefGoogle Scholar
  46. Rosenthal H, Bronzi P, Gessner J, Moreau D, Rochard E, Lasen C (2007) Draft action plan for the conservation and restoration of the European sturgeon (Acipenser sturio). Council of Europe, Convention on the conservation of European wildlife and natural habitats, Strasbourg, p 47Google Scholar
  47. Shang EHH, Wu RSS (2004) Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ Sci Technol 38:4763–4767CrossRefGoogle Scholar
  48. Shields RJ, Brown NP, Bromage NR (1997) Blastomere morphology as a predictive measure of fish egg viability. Aquaculture 155:1–12CrossRefGoogle Scholar
  49. Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS (2000) Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 28:705–715CrossRefGoogle Scholar
  50. Wang YL, Binkowski FP, Doroshov SI (1985) Effect of temperature on early development of white and lake sturgeon, Acipenser transmontanus and A. fulvescens. Environmental Biology of Fishes 14:43–50CrossRefGoogle Scholar
  51. Williot P, Castelnaud G (2011) Chapter 20 historic overview of the European sturgeon Acipenser sturio in France: surveys, regulations, reasons for the decline, conservation, and analysis. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L., 1758. Springer, Berlin Heidelberg, pp. 285-308Google Scholar
  52. Williot P, Rochard E, Desse-Berset N, Gessner J, Kirschbaum F (2011) Chapter 1 brief introduction to sturgeon with a special focus on the European sturgeon, Acipenser sturio L. 1758. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L., 1758. Springer, Berlin Heidelberg, pp 3-12Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicolas Delage
    • 1
    • 2
    • 3
  • Blandine Couturier
    • 1
  • Philippe Jatteau
    • 1
  • Thibaut Larcher
    • 4
    • 5
  • Mireille Ledevin
    • 4
    • 5
  • Hélicia Goubin
    • 4
    • 5
  • Jérôme Cachot
    • 2
  • Eric Rochard
    • 1
    Email author return OK on get
  1. 1.IRSTEA EABX, Aquatic Ecosystems and Global Changes Research UnitCestasFrance
  2. 2.University of Bordeaux, UMR CNRS EPOC 5805Pessac CedexFrance
  3. 3.Agence Française de la Biodiversité, Pôle Gest’AquaRennes CedexFrance
  4. 4.INRA,UMR 703 APEXOniris La ChantrerieNantesFrance
  5. 5.LUNAM Université, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-atlantique (Oniris)NantesFrance

Personalised recommendations