Advertisement

Mercury contamination levels in the bioindicator piscivorous fish Hoplias aïmara in French Guiana rivers: mapping for risk assessment

  • Régine Maury-BrachetEmail author
  • Sophie Gentes
  • Emilie P. Dassié
  • Agnès Feurtet-Mazel
  • Régis Vigouroux
  • Valérie Laperche
  • Patrice Gonzalez
  • Vincent Hanquiez
  • Nathalie Mesmer-Dudons
  • Gilles Durrieu
  • Alexia Legeay
Multi-Stressors in Freshwater and Transitional Environments: from Legacy Pollutants to Emerging Ones
  • 42 Downloads

Abstract

In French Guiana, native populations present high level of mercury contamination, which has been linked to the consumption of contaminated fishes. The goal of this study is to undertake a cartography of mercury contamination levels in fishes from the six main Guiana rivers. The selected species for this study is the ubiquitous piscivorous fish Hoplias aimara. A total number of 575 fishes from 134 discrete fishing sites are regrouped into 51 river sectors. Results from this study permits to rank the six main Guiana rivers by their mean level of contamination: Oyapock (0.548 mg kg−1), Comté (0.624 mg kg−1), Maroni (0.671 mg kg−1), Approuague (0.684 mg kg−1), Mana (0.675 mg kg−1), and Sinnamary (1.025 mg kg−1). The contamination is however not spatially homogenous along each river, and a map of the different levels of mercury contamination in fishes is provided. Sectors of low mean Hg contamination are observed both upstream (0.471 mg kg−1) and downstream (0.424 mg kg−1), corresponding to areas without any influence of gold mining activities and areas under the influence of estuarine dilution, respectively. Anoxia and gold mining activities are found to be the two main factors responsible for the high mercury concentration in fish muscles. While mean levels of mercury contaminations are higher in anoxia areas (1.029 mg kg−1), contaminations induced by gold mining activities (0.717 mg kg−1) present the most harmful consequences to human populations. No significant differences in Hg concentrations are observed between 2005 and 2014 for neither a pristine nor a gold mining area, while Hg concentration differences are observed between former (0.550 mg kg−1) and current gold mining sites (0.717 mg kg−1).

Keywords

Mercury Piscivorous fish Freshwater Gold mining Hydropower Swamp 

Notes

Acknowledgments

The French National Scientific Research Center (CNRS/PEVS, «Mercury in French Guiana» research program), the E.E.C. Feder funds, and the French Ministry of Environment and ANR RIMNES program supported this work. The authors are grateful to French Guiana authorities and the volunteers who participated very actively in the collection of Hoplias aimara: Armand dit Kapo (3 Sauts), Patrick Arsene (3 Sauts), Guyome Bacarel (Camopi), Jean François Bellegarde, Régis BET (3 Sauts), François Blanchard (French Geological Survey), Denis Blanchet, Jocelyne Bonneau, Nathalie Boisseau, Henri Boulliard, Sébastien Brosse, Joël Canezin, Fabienne Castex, Catus, Philippe Cerdan, Jocelyne Chagny, Michel Charpentier, André Cognat, Marc Dabrigeon, Pinson Dondaine, Asjeme Druart called «Chris», Claude Dufay, Franck Dufay, Stéphane Dufay, Eric Durou, Rose Marie Escobar, Françoise Falce, Jacques Falce, Gaëlle Fornet, Philippe Gaucher, Alain Giron, Eric Godard Stéphane Guedron, Yann Guilloton, Dr. Joubert, Bernard Joseph, Adjudant Didier Kurzt, Eric Heydin, Véronique Horeau, Martine Lanson, Pierre Laporte, Frederic Lemaire, Maria Lony, Marie-lyn Louisor, Isman Mahes, Maelle (Antecum Pata), Magalie (3 Sauts), René Monerville, Stéphan Parent, Alain Pave, Eric Pellet, Emeline Perigny, Jean Yves Piccin, Raymond (3 Sauts), Hélène Richard, Louise Twenke, Bruno LE Vessier, and Yann Quimbequio (Antecume Pata).

References

  1. Acha D, Iniguez V, Roulet M, Guimaraes JR, Luna R, Alanoca L, Sanchez S (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with hg methylation. Appl Environ Microbiol 71:7531–7535CrossRefGoogle Scholar
  2. Barret J, Vendé M (2002) Atlas illustré de la Guyane. 219p. ISBN: 2–9518647–0-1.Google Scholar
  3. Bastos W, Dórea J, Bernardi J, Manzatto A, Mussy M, Lauthartte L, Lacerda L, Malm O (2016) Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environ Res 144:73–80CrossRefGoogle Scholar
  4. BAZAG (2007) Le mercure en Guyane. Risques sanitaires et enjeux de santé publique. Numéro thématique in Bulletin d’Alerte et de Surveillance Antilles Guyane [BASAG], N° 7 (07/2007). http://opac.invs.sante.fr/index.php?lvl=notice_display&id=3855
  5. Benoit JM, Mason RP, Gilmour CC, Aiken GR (2001) Constants for mercury binding by dissolved organic carbon isolates from the Florida Everglades. Geochim Cosmochim Acta 65:4445–4451CrossRefGoogle Scholar
  6. Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochemistry of environmentally important trace elements, ACS symposium series # 835. Y. Chai and O.C. braids, Eds. American Chemical Society, Washington, DC. pp. 262–297.Google Scholar
  7. Bizi M, Gaboriau H, Laperche V (2005). Preliminary laboratory study on the impact of gold exploitations in French Guyana on water quality and remobilisation of mercury. In 9th International FZK/TNO - Conference on Soil-Water Systems - Bordeaux - France - Convention Center - 03-07/10/2005Google Scholar
  8. Boudou A, Maury-Brachet R, Coquery M, Durrieu G, Cossa D (2005) Synergic effect of gold mining and damming on mercury contamination in fish. Environ Sci Technol 39:2448–2454CrossRefGoogle Scholar
  9. Boujard T, Pascal M, Meunier JF, and Le Bail PY (1997) Poissons de Guyane, guide écologique de l'Approuague et de la réserve des Nouragues. INRA Paris, France. p.219Google Scholar
  10. Bradley MA, Benjamin D, Barst BD, Basu N (2017) A review of mercury bioavailability in humans and fish. Int J Environ Res Public Health 14:169.  https://doi.org/10.3390/ijerph14020169 CrossRefGoogle Scholar
  11. Brosse S, Grenouillet G, Gevery M, Khazraie K, Tudesque L (2011) Small scale gold mining erodes fish assemblage structure in small neotropical streams. Biodivers Conserv 20:1013–1026CrossRefGoogle Scholar
  12. Cardoso T, Blateau A, Chaud P, Ardillon V, Boyer S, Flamand C, Godard E, Fréry N, Quenel P (2010) Le mercure en Guyane française : synthèse des études d’imprégnation et d’impact sanitaires menées de 1994 à 2005. BEH:118–120Google Scholar
  13. Carmouze JP, Lucotte M, Boudou A (2001) Le mercure en Amazonie : rôle de l’homme et de l’environnement, risques sanitaires. IRD, Paris 494pCrossRefGoogle Scholar
  14. Castilhos Z, Rodrigues-Filho S, Cesar R, Rodrigues AP, Villas-Bôas R, Jesus I, Lima M, Faial M, Miranda A, Brabo E, Beinhoff C, Santos E (2015) Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon. Environ Sci Pollut Res 22:11255–11264CrossRefGoogle Scholar
  15. Charlet L, Boudou A (2002) Cet or qui file un mauvais mercure. La Recherche 359:52–59Google Scholar
  16. Coquery M, Cossa D, Azemard S, Peretyazhko T, Charlet L (2003) Methylmercury formation in the anoxic waters of the petit-Saut reservoir (French Guiana) and its spreading in the adjacent Sinnamary River. J Phys IV 31:307–327Google Scholar
  17. Cordier S, Grasmick C, Pasquier-Passelaigue M, Mandereau L, Weber JP, Jouan M (1997) Imprégnation de la population guyanaise par le mercure: niveaux et sources d’exposition humain. BEH 14:59–61Google Scholar
  18. Costa MF, Landing WM, Kehrig HA, Barletta M, Holmes CD, Barrocas PRG, Evers DC, Buck DG, Vzasconcellos AC, Hacon SS, Moreira JC, Malm O (2012) Mercury in tropical and subtropical coastal environments.Environmental Research; 119:88–100Google Scholar
  19. Cottard F, Laperche V (2012) Caractérisation des déchets miniers de quatre mines d’or de Guyane. Rapport final. BRGM/RP-61027-FR: 117p.Google Scholar
  20. Dezécache C, Faure E, Gond V, Salles JM, Vieilledent G, Hérault B (2017) Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation. Environ Res Lett 12:034013.  https://doi.org/10.1088/1748-9326/aa6082 CrossRefGoogle Scholar
  21. Dominique Y (2006) Contamination par les différentes formes chimiques du mercure de la composante biologique du barrage hydroélectrique de Petit Saut, en Guyane Française. Thèse de Doctorat – Université Bordeaux 1, n°3180, 335p.Google Scholar
  22. Dominique Y, Maury-Brachet R, Muresan B, Vigouroux R, Ricahard S, Cossa D, Mariotti A, Boudou A (2007) Biofilm and mercury availabillity as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed amazonian freshwater system. Environ Toxicol Chem 26(1):45–52CrossRefGoogle Scholar
  23. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and Effects. Environ Sci Technol 47(10):4967–4983.  https://doi.org/10.1021/es305071v. CrossRefGoogle Scholar
  24. Durrieu G, Maury-Brachet R, and Boudou A (2005) Goldmining and mercury contamination of the piscivorous fish Hoplias Aimara in French Guiana (Amazon basin). Ecotoxicoloy and Environnemental Safety. 60:315–323Google Scholar
  25. Fréry N, Maillot E, Dehaeger M, Boudou A, Maury-Brachet R (1999) Exposition au mercure de la population amérindienne Wayana de Guyane: enquête alimentaire. Institut de veille sanitaire, Saint-Maurice. http://invs.sante.fr/publications/
  26. Fréry N, Maury-Brachet R, Maillot E, Deheeger M, de Mérona B, Boudou A (2001) Goldmining activities and mercury contamination of native Amerindian communities in French Guiana: key role of fish indietary uptake. Environ Health Perspect 109:449–456Google Scholar
  27. Friedl G, Wüest A (2002) Disrupting biogeochemical cycles—consequences of damming. Aquat Sci 64.  https://doi.org/10.1007/s00027-002-8054-0
  28. Fujimura M, Matsumaya A, Harvard JP, Bourdineaud JP, Nakamura K (2011) Mercury contamination in humans in upper Maroni, French Guiana between 2004 and 2009. Bull Environ Toxicol 88:135–139.  https://doi.org/10.1007/s00128-011-0497-3 CrossRefGoogle Scholar
  29. Gentès S, Monperrus M, Legeay A, Maury-Brachet R, Davail S, André JM, Guyoneaud R (2013) Incidence of invasive macrophytes on methylmercury budget in temperate lakes: central role of bacterial periphytic communities. Environ Pollut 172:116–123CrossRefGoogle Scholar
  30. Grandjean P, Weihe P, Nielsen JB (1994) Methylmercury: significance of intrauterine and postnatal exposures. Clin Chem 40(/7):1395–1400Google Scholar
  31. Grimaldi C, Grimaldi M, Guedron S. (2008). Mercury distribution in tropical soil profiles related to origin or mercury and soil processes. Svi Total Environ. 401:121–129Google Scholar
  32. Guedron S, Grangeons S, Lanson B, Grimaldi M (2009) Mercury speciation in a tropical soil association; consequence of gold mining on Hg distribution in French Guiana. Geoderma 153:331–346CrossRefGoogle Scholar
  33. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24CrossRefGoogle Scholar
  34. Harris R, Bodaly RA (1998) Temperature, growth and dietary effects on fish mercury dynamics in two Ontario lakes. Biogeochemistry 40(2):175–187CrossRefGoogle Scholar
  35. Huguet L, Castelle S, Schafer J, Blanc G, Maury-Brachet R, Reynouard C, Jorand C (2009) Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana. Sci Total Environ 408:1338–1348.  https://doi.org/10.1016/j.scitotenv.2009.10.058. CrossRefGoogle Scholar
  36. Kasper D, Forsberg BR, Amaral JHF, Leitao RP, Py-Daniel SS, Basto W, Malm O (2014) Reservoir stratification affects methylmercure levels in river water, plancton, fish downstream from Balbina Hydroelectirc dam, Amazonas, Brazil. Environ Sci Technol 48:1032–1040CrossRefGoogle Scholar
  37. Keith P, Le Bail PY, Planquette P (2000). Atlas des poissons d’eau douce de Guyane. Tome 2, fascicule I: Batrachoidiformes, Mugiliformes, Beloniformes, Cyprinodontiformes, Synbranchiformes, Perciformes, Pleuronectiformes, Tetraodontiformes. Patrimoines naturels (M.N.H.N/S.P.N.), 43(I), 286 pGoogle Scholar
  38. King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437CrossRefGoogle Scholar
  39. Kocman D, Wilson SJ, Amos H, Telmer K, Steenhuisen F, Sunderland L, Mason R, Outridge P, Horvat M (2017) Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int J Environ Res Public Health 14:138CrossRefGoogle Scholar
  40. Laperche V, Maury-Brachet R, Blanchard F, Dominique Y, Durrieu G, Massabuau JC, Bouillard H, Joseph B, Laporte P, Mesmer-Dudons N, Duflo V, Callier L. (2007) Répartition régionale du mercure dans les sédiments et les poissons de six fleuves de Guyane - Rapport BRGM/RP-55965-FR – 203 pp.Google Scholar
  41. Kullander SO and Nijssen H (1989) The cichlids of Surinam. Brill EJ, Leiden, The Netherlands. p.256Google Scholar
  42. Laperche V, Nontanavanh M, Thomassin JF (2008) Synthèse critique des connaissances sur les conséquences environnementales de l’Orpaillage en Guyane. Rapport BRGM/RP-56652-FR : 73pGoogle Scholar
  43. Laperche V, Hellal J, Maury-Brachet R, Joseph B, Laporte P, Breeze D, Blanchard F (2014) Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin). SpringerPlus 3:322CrossRefGoogle Scholar
  44. Lavigne M, Lucotte M, Paquet S (2010) Relationship between mercury concentration and growth rates for walleyes, northern pike, and Lake trout from Quebec Lakes. N Am J Fish Manag 30:1221–1237.  https://doi.org/10.1577/M08-065.1 CrossRefGoogle Scholar
  45. Lucotte M, Paquet S, Moingt M (2016). Climate and Physiography Predict Mercury Concentrations in Game Fish Species in Quebec Lakes Better than Antropologenic Disturbances. Arch Environ Contam Toxicol.  https://doi.org/10.1007/s00244-016-0261-0
  46. Le Bail PY, Keith P, Planquette P (2000) Atlas des poissons d’eau douce de Guyane; Tome 2, fasc. 2; Collection du Patrimoine Naturel 43: ParisGoogle Scholar
  47. Marrugo-Negrete J, Pinedo J, Diez S (2015) Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere 3:44–51CrossRefGoogle Scholar
  48. Maury-Brachet R, Durrieu G, Dominique Y, Boudou A (2006) Mercury distribution in fish organs and food regimes: significant relationships from twelve species collected in French Guiana (Amazonian basin). Sci Total Environ 368:262–270CrossRefGoogle Scholar
  49. Mergler D, Lebel J (2001) les effets de l’exposition au méthylmercure chez les adultes. In Le Mercure en Amazonie (JP Carmouze) IRD edition, p.373–389Google Scholar
  50. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36:3–11CrossRefGoogle Scholar
  51. Mol JH, Ramlal JS, Lietar C, Verloo M (2001) Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America. Environ Res Sect A 86:183–197CrossRefGoogle Scholar
  52. Muresan Paslaru B (2006) Géochimie du mercure dans le continuum de la retenue de Petit-Saut et de l’estuaire du Sinnamary, Guyane française. Thèse de Doctorat - Université Bordeaux 1, n°3178, 265pGoogle Scholar
  53. Muresan B, Cossa D, Richard S, Dominique Y (2008) Monomethylmercury sources in a tropical artificial reservoir. Appl Geochem 23:1101–1126CrossRefGoogle Scholar
  54. Myers GJ, Davidson PW, Cox C (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361:1686–1692CrossRefGoogle Scholar
  55. Nielsen A, White RF, Nielsen U, Cleary D, Grandjean P. (1997). Psychomotor performance of methylmercury exposed children from two Amazonian villages. In: proceedings of the international conference health effects of mercury exposure, 22–25 June 1997, Torshavn, Feroe Islands. Odense, Denmark: Odense University;59Google Scholar
  56. PAG (Parc Amazonien de Guyane) (2017) Suivi environnemental des impacts de l’orpaillage illégal. Bulletin n°5 5pGoogle Scholar
  57. Parzen E (1962) On estimation of a probability density function and mode. The Annals of Mathematical Statistics. 21:1065–1076Google Scholar
  58. Picot JC, Foucher JL, Wagner R (1993) Production aurifère et mercure utilisé de l’origine à nos jours. Rapport BRGM-R37837, BRGM (ed). p 154Google Scholar
  59. Pignoux R, Gourvès PY, Sow M, Maury-Brachet R (submitted) Etude et prévention de l’imprégnation mercurielle des femmes enceintes des communes de Maripasoula et de Papaïchton, en Guyane française 1er volet 2012-2013. Toxicologie Analytique et CliniqueGoogle Scholar
  60. Planquette P, Keith P, Le Bail PY 1996. Atlas des poissons d’eau douce de Guyane (tome 1). Collection du Patrimoine Naturel. vol.22. IEGB- M.N.H.N, INRA, CSP, Min. Env., Paris, 429 pGoogle Scholar
  61. Rahm M, Thibault P, Shapiro A, Smartt T, Paloeng C, Crabbe S, Farias P, Carvalho R, Joubert P (2017). Monitoring the impact of gold mining on the forest cover and freshwater in the Guiana shield. Reference year 2015. pp. 20Google Scholar
  62. SMES (2016) Demande de prolongation de concession pour or et substances connexes . Consession n°01/80 dite de "Saint Elie". GéoPlusEnvironnement R 15081101-T1. p 129Google Scholar
  63. Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43(8):2983–2988CrossRefGoogle Scholar
  64. Thomassin J-F, Urien P, Verneyre L, Charles N, Galin R, Guillon D, Boudrie M, Cailleau A, Matheus P, Ostorero C, Tamagno D (2017) Exploration et exploitation minière en Guyane. Collection « La mine en France ». Tome 8, 143 pGoogle Scholar
  65. Tudesque L, Grenouillet G, Gevery M, Khazraie K, Brosse S (2012) Influence of small scale gold mining on French Guiana streams: are diatom assemblages valid disturbance sensors ? Ecol Indic 14(100):106Google Scholar
  66. Watras CJ, Back RC, Halvorsen S, Hudson RJM, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208CrossRefGoogle Scholar
  67. Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2002) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology. Lewis Publishers, Boca Raton, pp 409–463Google Scholar
  68. Winch S, Mills HJ, Kostka JE, Fortin D, Lean DRS (2009) Identification of sulfate-reducing bacteria in methylmercury contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiol Ecol 68(1):94–107.  https://doi.org/10.1111/j.1574-6941. CrossRefGoogle Scholar
  69. World Health Organization (WHO) (1990) International Programme on chemical safety environmental health criteria, 101: methylmercury WHO/IPCS. World Health Organization (WHO), Geneva, p 144Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Régine Maury-Brachet
    • 1
    Email author
  • Sophie Gentes
    • 1
  • Emilie P. Dassié
    • 1
  • Agnès Feurtet-Mazel
    • 1
  • Régis Vigouroux
    • 2
  • Valérie Laperche
    • 3
  • Patrice Gonzalez
    • 1
  • Vincent Hanquiez
    • 1
  • Nathalie Mesmer-Dudons
    • 1
  • Gilles Durrieu
    • 4
  • Alexia Legeay
    • 1
  1. 1.Université de Bordeaux, UMR EPOC 5805ArcachonFrance
  2. 2.Hydreco, KourouGuyaneFrance
  3. 3.French Geological Survey, Laboratoire d’Environnement et d’ÉcotechnologiesOrléansFrance
  4. 4.Université de Bretagne Sud, LMBA UMR 6205LorientFrance

Personalised recommendations