Advertisement

Toxicological aspects of trihalomethanes: a systematic review

  • Luciana de Castro Medeiros
  • Feliphe Lacerda Souza de Alencar
  • Julio Alejandro Navoni
  • André Luis Calado de Araujo
  • Viviane Souza do AmaralEmail author
Review Article

Abstract

Chlorine is considered the most used chemical agent for water disinfection worldwide. However, water chlorination can lead to by-product generation which can be toxic to humans. The present study aimed to perform a systematic review on the toxicity of trihalomethanes (THMs) through bioindicators of cytotoxicity, genotoxicity, and mutagenicity. The results showed that studies on the effects of THMs on DNA are a current research concern for evaluating the toxicity of the pure compounds and real samples involving several types including water for recreational use, reused water, and drinking water. THMs deleterious effects have been assessed using several biosystems, where the Ames test along with experimental animal models were the most cited. A wide range of THM concentrations have been tested. Nevertheless, DNA damage was demonstrated, highlighting the potential human health risk. Among the studied THMs, chloroform presented a different action mechanism when compared with brominated THMs, with the former being cytotoxic while brominated THMs (bromodichloromethane, bromoform, and dibromochloromethane) were cytotoxic, genotoxic, and mutagenic. The described evidence in this research highlights the relevance of this topic as a human health issue. Nevertheless, research aimed to represent THMs current exposure conditions in a more accurate way would be needed to understand the real impact on human health.

Keywords

Chlorination by-products Trihalomethane Water disinfection DNA damage 

Notes

Funding information

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_3949_MOESM1_ESM.docx (69 kb)
ESM 1 (DOCX 69 kb)

References

  1. Abda A, Benouareth DE, Tabet M, Liman R, Konuk M, Khallef M, Taher A (2015) Mutagenicity and genotoxicity of drinking water in Guelma region, Algeria. Environ Monit Assess 187(21):1–15Google Scholar
  2. Allard S, Tan J, Joll CA, Von Gunten U (2015) Mechanistic study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation. Environ Sci Technol 49(18):11105–11114CrossRefGoogle Scholar
  3. Ames BN, Mccann J, Yamasaki EDITH (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364CrossRefGoogle Scholar
  4. Auttachoat W, Germolec DR, Collins BJ, Luebke RW, White KL Jr, Guo TL (2009) Immunotoxicological profile of chloroform in female B6C3F1 mice when administered in drinking water. Drug Chem Toxicol 32(1):77–87CrossRefGoogle Scholar
  5. Backer L, Ashley D, Bonin M, Cardinali F, Kieszak S, Wooten J (2000) Household exposures to drinking water disinfection by-products: whole blood trihalomethane levels. J Expo Anal Environ Epidemiol 10:321–326CrossRefGoogle Scholar
  6. Bellar, TA, Lichtenberg, JJ, Kroner, RC (1974) The occurrence of organohalides in chlorinated drinking waters. J AWWA 66:703–706Google Scholar
  7. Bolognesi C, Knasmueller S, Nersesyan A, Thomas P, Fenech M (2013) The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay - an update and expanded photogallery. Mutat Res 753:100–113CrossRefGoogle Scholar
  8. Boorman, GA, Dellarco, V, Dunnick, JK, Chapin, RE, Hunter, S, Hauchman, F, Gardner, H, Cox, M, Sills, RC (1999) Drinking water disinfection byproducs: review and approach to toxicity evaluation. Environ Health Persp 107:207–217Google Scholar
  9. Brennan RJ, Schiestl RH (1998) Chloroform and carbon tetrachloride induce intrachromosomal recombination and oxidative free radicals in Saccharomyces cerevisiae. Mutat Res 397(2):271–278CrossRefGoogle Scholar
  10. Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castaño-Vinyals G, Samanic C, Rothman N, Kogevinas M (2010) Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect 118:1545–1550CrossRefGoogle Scholar
  11. Ceretti E, Moretti M, Zerbini I, Villarini M, Zani C, Monarca S, Feretti D (2016) Occurrence and control of genotoxins in drinking water: a monitoring proposal. J Public Health Res 5(769):116–121Google Scholar
  12. Charrois JWA, Hrudey SE (2007) Breakpoint chlorination and free-chlorine contact time: implications for drinking water N- nitrosodimethylamine concentrations. Water Res 41(3):674–682CrossRefGoogle Scholar
  13. Claxton LD, Pegram R, Schenck KM, Simmons JE, Warren SH (2008) Integrated disinfection by-products research: Salmonella mutagenicity of water concentrates disinfected by chlorination and ozonation/postchlorination. J Toxic Environ Health A 71(17):1187–1194CrossRefGoogle Scholar
  14. Coffin JC, Ge R, Yang S, Kramer PM, Tao L, Pereira MA (2000) Effect of trihalomethanes on cell proliferation and DNA methylation in female B6C3F1 mouse liver. Toxicol Sci 252:243–252CrossRefGoogle Scholar
  15. DeMarini DM, Abu-shakra A, Felton CF, Patterson KS (1995) Mutation spectra in Salmonella of chlorinated, chloraminated, or ozonated drinking water extracts: comparison to MX. Environ Mol Mutagen 26:270–285CrossRefGoogle Scholar
  16. DeMarini DM, Shelton ML, Warren SH, Ross TM, Shim JY, Richard AM, Pegram RA (1997) Glutathione S-transferase-mediated induction of GC → AT transitions by halomethanes in salmonella. Environ Mol Mutagen 30(4):440–447CrossRefGoogle Scholar
  17. Egito LCM, Medeiros MG, Medeiros SRB, Agnez-Lima LF (2007) Cytotoxic and genotoxic potential of surface water from the Pitimbu river, northeastern/RN Brazil. Genet Mol Biol 30(2):435–441CrossRefGoogle Scholar
  18. Faustino-Rocha AI, Rodrigues D, Costa RG, Diniz C, Aragão S, Talhada D, Botelho M, Colaço A, Pires MJ, Peixoto F, Oliveira PA (2016) Trihalomethanes in liver pathology: mitochondrial dysfunction and oxidative stress in the mouse. Environ Toxicol 31(8):1009–1016CrossRefGoogle Scholar
  19. Fisher D, Yonkos L, Ziegler G, Friedel E, Burton D (2014) Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana. Water Res 55:233–244CrossRefGoogle Scholar
  20. Fujie K, Aoki T, Wada M (1990) Acute and subacute cytogenetic effects of the trihalomethanes on rat bone marrow cells in vivo. Mutat Res 242:111–119CrossRefGoogle Scholar
  21. Gaylard CC, Belinaso ML, Manfio GP (2005) Aspectos biologicos e técnicos da biorremediaçao de xenobióticos. Biotecnologia ciência e desenvolvimento 34:36–43 (in Portuguese)Google Scholar
  22. Geter DR, Chang LW, Hanley NM, Ross MK, Pegram RA, DeAngelo AB (2004) Analysis of in vivo and in vitro DNA strand breaks from trihalomethane exposure. J Carcinog 3(1):2CrossRefGoogle Scholar
  23. Golden RJ, Holm SE, Robinson D, Julkunen PH, Reese EA (1997) Chloroform mode of action: implications for cancer risk assessment. Regul Toxicol Pharmacol 26:142–155CrossRefGoogle Scholar
  24. Goslan EH, Krasner SW, Bower M, Rocks SA, Holmesa P, Levy LS, Parsons SA (2009) A comparaison of disinfection by- products found in chlorinated and chloraminated drinking water in Scotland. Water Res 43:4698–4706CrossRefGoogle Scholar
  25. Gruau G (2004) Les sous-produits chlore´s dans les eaux destine ´es a` l’alimentation humaine. Rapport d’e´tude remis a` la DRASS Bretagne et a` la re´gion Bretagne. 30 september 2004. CAREN, UMR 6118 Ge´osciences Rennes, Rennes/France human cells. Mutat Res 513:151–157Google Scholar
  26. Guzzella L, Monarca S, Zani C, Feretti D, Zerbini I, Buschini A, Poli P, Rossi C, Richardson SD (2004) In vitro potential genotoxic effects of surface drinking water treated with chlorine and alternative disinfectants. Mutat Res 564(2):179–193CrossRefGoogle Scholar
  27. Hansen KMS, Willach S, Antoniou MG, Mosbæk H, Albrechtsen HJ, Andersen HR (2012a) Effect of pH on the formation of disinfection byproducts in swimming pool water - Is less THM better? Water Res 46(19):6399–6409CrossRefGoogle Scholar
  28. Hansen KMS, Willach S, Mosbæk H, Andersen HR (2012b) Particles in swimming pool filters - does pH determine the DBP formation? Chemosphere 87(3):241–247CrossRefGoogle Scholar
  29. Health Canada (2017). Guidelines for Canadian Drinking Water Quality Summary Table. Federal-Provincial-Territorial Committee on Drinking Water. Available from: https://www.canada.ca/ content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_ recom /sum_guide-res_recom-eng.pdf (accessed 7.4.2018)
  30. Hrudey SE (2009) Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res 43(8):2057–2092CrossRefGoogle Scholar
  31. IARC-International Agency for Research on Cancer (1999) Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. In: IARC monographs on evaluation of carcinogenic risks in humans, vol. 73. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  32. IARC-International Agency for Research on Cancer (2003) Some drinking-water disinfectants and contaminants, including arsenic. In: IARC Monographs on Evaluation of Carcinogenic Risks in Humans, vol 84. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  33. Kargalioglu Y, Mcmillan BJ, Minear RA, Plewa MJ (2002) Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. Teratog Carcinog Mutagen 22:113–128CrossRefGoogle Scholar
  34. Keegan TE, Simmons JE, Pegram RA (1998) Noael and Loael determinations of acute hepatotoxicity for chloroform and bromodichloromethane delivered in an aqueous vehicle to F344 rats. J Toxic Environ Health A 55(1):65–75CrossRefGoogle Scholar
  35. Kogevinas M, Villanueva CM, Font-Ribera L, Liviac D, Bustamante M, Espinoza F, Nieuwenhuijsen MJ, Espinosa A, Fernandez P, DeMarini DM, Grimalt JO, Grummt T, Marcos R (2010) Genotoxic effects in swimmers exposed to disinfection by-products in indoor swimming pools. Environ Health Perspect 118(11):1531–1537CrossRefGoogle Scholar
  36. Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Aieta EM (1989) The occurrence of disinfection by-products in US drinking water. J Am Water Works Assoc:41–53Google Scholar
  37. Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn RL, Sclimenti MJ, Onstad GD, Thruston AD Jr (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40(23):7175–7185CrossRefGoogle Scholar
  38. Krasner SW, Lee TCF, Westerhoff P, Fischer N, Hanigan D, Karanfil T, Beita-Sandí W, Taylor-Edmonds L, Andrews RC (2016) Granular activated carbon treatment may result in higher predicted genotoxicity in the presence of bromide. Environ Sci Technol 50(17):9583–9591CrossRefGoogle Scholar
  39. Kumari M, Gupta SK, Mishra BK (2015) Multi-exposure cancer and non-cancer risk assessment of trihalomethanes in drinking water supplies - A case study of Eastern region of India. Ecotoxicol Environ Saf 113:433–438CrossRefGoogle Scholar
  40. Kundu B, Richardson SD, Granville CA, Shaughnessy DT, Hanley NM, Swartz PD, Richard AM, DeMarini DM (2004) Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100 : structure – activity analysis and mutation spectra. Mutat Res 554:335–350CrossRefGoogle Scholar
  41. Lafrentz B, Lapatra S, Call D, Wiens G, Cain K (2009) Proteomic analysis of Flavobacterium psychrophilum cultured in vivo and in iron-limited media. Dis Aquat Org 87:171–182CrossRefGoogle Scholar
  42. Landi S, Hanley NM, Kligerman AD, Demarini DM (1999a) Induction of sister chromatid exchanges in human peripheral blood lymphocytes by bromoform: Investigation of the role of GSTT1-1 polymorphism. Mutat Res 429(2):261–267CrossRefGoogle Scholar
  43. Landi S, Hanley NM, Warren SH, Pegram RA, Demarini DM (1999b) Induction of genetic damage in human lymphocytes and mutations in Salmonella by trihalomethanes : role of red blood cells and GSTT1-1 polymorphism. Mutagenesis 14(5):479–482CrossRefGoogle Scholar
  44. Landi S, Naccarati A, Ross MK, Hanley NM, Dailey L, Devlin RB, Vasquez M, Pegram RA, DeMarini DM (2003) Induction of DNA strand breaks by trihalomethanes in primary human lung epithelial cells. Mutat Res 538(1-2):41–50CrossRefGoogle Scholar
  45. Lapolli FR, Hassemer MEN, Camargo JG, Damásio DL, Lobo-recio MÁ (2005) Disinfection of domestic wastewater using chlorine dioxide. Engenharia Sanitária e Ambiental 10(3):200–208CrossRefGoogle Scholar
  46. Leavens TL, Blount BC, Demarini DM, Madden MC, Valentine JL, Case MW et al (2007) Disposition of Bromodichloromethane in Humans Following Oral and Dermal Exposure. Toxicol Sci 99(2):432–445CrossRefGoogle Scholar
  47. Lilly PD, Simmons JE, Pegram RA (1994) Dose-dependent vehicle differesnces in the acute toxicity of bromodichloromethane. Fundam Appl Toxicol 23:132–140CrossRefGoogle Scholar
  48. Lu WQ, Chen XN, Yue F, Jenter C, Gminski R, Li XY, Xie H, Mersch-Sundermann V (2002) Studies on the in vivo and in vitro mutagenicity and the lipid peroxidation of chlorinated surface (drinking) water in rats and metabolically competent. Mutat Res 513(1-2):151–157CrossRefGoogle Scholar
  49. Lynberg M, Nuckols JR, Langlois P, Ashley D, Singer P, Mendola P, Wilkes C, Krapfl H, Miles E, Speight V, Lin B, Small L, Miles A, Bonin M, Zeitz P, Tadkod A, Henry J, Forrester MB (2001) Assessing exposure to disinfection by-products in women of reproductive age living in Corpus Christi, Texas, and Cobb county, Georgia: descriptive results and methods. Environ Health Perspect 109:597–604CrossRefGoogle Scholar
  50. Manasfi T, De Méo M, Coulomb B, Di Giorgio C, Boudenne JL (2016) Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environ Int 88:94–102CrossRefGoogle Scholar
  51. McDonald TA, Komulainen H (2005) Carcinogenicity of the chlorination disinfection by-product MX. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23(2):163–214CrossRefGoogle Scholar
  52. McKie MJ, Taylor-Edmonds L, Andrews SA, Andrews RC (2015) Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity. Water Res 81:196–207CrossRefGoogle Scholar
  53. Meier JR (1988) Genotoxic activity of organic chemicals in drinking water. Mutat Res 196:211–245CrossRefGoogle Scholar
  54. Monarca S, Richardson SD, Feretti D, Grottolo M, Thruston G Jr, Zani AD, Navazio C, Zerbini G, Ragazzo I, Alberti PA (2002) Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environ Toxicol Chem 21(2):309–318CrossRefGoogle Scholar
  55. Monarca S, Zani C, Richardson SD, ADJr T, Moretti M, Feretti D, Villarini M (2004) A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water Res 38:3809–3819CrossRefGoogle Scholar
  56. Morris RD, Audet AM, Angelillo IF, Chalmers TC, Mosteller F (1992) Chlorination, chlorination by-products, and cancer: a meta-analysi. Am J Public Health 82(7):955–963CrossRefGoogle Scholar
  57. Myllykangas T, Nissinen TK, Mäki-Paakkanen J, Hirvonen A, Vartiainen T (2003) Bromide affecting drinking water mutagenicity. Chemosphere 53(7):745–756CrossRefGoogle Scholar
  58. Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P (2000) Chlorination disinfection by-products in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57(2):73–85CrossRefGoogle Scholar
  59. Nieuwenhuijsen MJ, Martinez D, Grellier J, Bennett J, Best N, Iszatt N et al (2009a) Review chlorination disinfection by-products in drinking water and congenital anomalies : review and meta-analyses. Environ Health Perspect 117(10):1486–1493CrossRefGoogle Scholar
  60. Nieuwenhuijsen M, Grellier J, Smith R, Iszatt N, Bennett J, Best N, Toledano M (2009b) The epidemiology and possible mechanisms of disinfection by-products in drinking water. Phil Trans R Soc A 367:4043–4076CrossRefGoogle Scholar
  61. Nobukawa T, Sanukida S (2001) Effect of bromide ions on genotoxicity of halogenated by-products from chlorination of humic acid in water. Water Res 35(18):4293–4298CrossRefGoogle Scholar
  62. NTP - National Toxicology Program (2006). Toxicology and Carcinogenesis Studies of Bromodichloromethane (CAS No. 75-27-4) in Male F344/N Rats and Female B6C3F1 Mice (Drinking Water Studies). National Toxicology Program, Research Triangle Park, NCGoogle Scholar
  63. NTP - National Toxicology Program (2007). Report on the Toxicology Studies of ( Fvb Tg . Ac Hemizygous ) Mice ( Dermal , Drinking Water , And Gavage Studies ) and Carcinogenicity Studies of Bromodichloromethane (Drinking Water and Gavage Studies). National Toxicology Program, (75)Google Scholar
  64. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149CrossRefGoogle Scholar
  65. Pagé-Larivière F, Tremblay A, Campagna C, Rodriguez MJ, Sirard MA (2016) Low concentrations of bromodichloromethane induce a toxicogenomic response in porcine embryos in vitro. Reprod Toxicol 66:44–55CrossRefGoogle Scholar
  66. Parinet J, Tabaries S, Coulomb B, Vassalo L, Boudenne J (2011) Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Res 46(3):828–836CrossRefGoogle Scholar
  67. Park KY, Choi SY, Lee SH, Kweon JH, Song JH (2016) Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ Pollut 215:314–321CrossRefGoogle Scholar
  68. Pegram RA, Andersen ME, Warren SH, Ross TM, Claxton LD (1997) Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane of chloroform. Toxicol Appl Pharmacol 144(1):183–188CrossRefGoogle Scholar
  69. Pignata C, Fea E, Rovere R, Degan R, Lorenzi E, De Ceglia M et al (2012) Chlorination in a wastewater treatment plant: acute toxicity effects of the effluent and of the recipient water body. Environ Monit Assess 184(4):2091–2103CrossRefGoogle Scholar
  70. Plewa MJ, Kargalioglu Y, Vankerk D, Minear RA, Wagner ED (2002) Mammalian cell cytotoxicity analysis of drinking water disinfection by-products. Environ Mol Mutagen 40:134–142CrossRefGoogle Scholar
  71. Plewa MJ, Wagner ED, Mitch WA (2011) Comparative mammalian cell cytotoxicity of water concentrates from disinfected recreational pools. Environ Sci Technol 45(9):4159–4165CrossRefGoogle Scholar
  72. Potter CL, Chang LW, Deangelo AB, Daniel FB (1996) Effects of four trihalomethanes on DNA strand breaks, renal hyaline droplet formation and serum testosterone in male F-344 rats. Cancer Lett 106(2):235–242CrossRefGoogle Scholar
  73. Ranmuthugala G, Pilotto L, Smith W, Vimalasiri T, Dear K, Douglas R (2003) Chlorinated drinking water and micronuclei in urinary bladder epithelial cells. Epidemiology 14(5):617–622CrossRefGoogle Scholar
  74. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636(1-3):178–242CrossRefGoogle Scholar
  75. Richardson SD, DeMarini DM, Kogevinas M, Fernandez P, Marco E, Lourencetti C et al (2010) What’s in the pool? a comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ Health Perspect 118(11):1523–1530CrossRefGoogle Scholar
  76. Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Water Treat Exam 23:234–243Google Scholar
  77. Rosenthal SL (1987) A review of the mutagenicity of chloroform. Environ Mol Mutagen 226:211–226CrossRefGoogle Scholar
  78. Ross MK, Pegram RA (2004) In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1. Toxicol Appl Pharmacol 195(2):166–181CrossRefGoogle Scholar
  79. Sanches SM, Silva CHTP, Vieira EM (2003) Alternative Disinfectant Agents for Water Treatment. Química Nova na Escola 17Google Scholar
  80. Sapone A, Gustavino B, Monfrinotti M, Canistro D, Broccoli M, Pozzetti L, Affatato A, Valgimigli L, Forti GC, Pedulli GF, Biagi GL, Abdel-Rahman SZ, Paolini M (2007) Perturbation of cytochrome P450, generation of oxidative stress and induction of DNA damage in Cyprinus carpio exposed in situ to potable surface water. Mutat Res 626(1-2):143–154CrossRefGoogle Scholar
  81. Sen DJ, Shishoo CJ, Lahiri A (2011) Three musketeers of genotoxicity: carcinogen, mutagen and teratogen. NSHM J Pharm Healthcare Manage 2:13–25Google Scholar
  82. Silva RCA, Araújo TM (2003) Groundwater quality in urban areas of Feira de Santana, State of Bahia. Ciência e Saúde Coletiva 9(4):1019–1028CrossRefGoogle Scholar
  83. Singer PC (1993) Formation and characterization of disinfection by-products. In: Craun GF. Safety of water desinfection: balancing chemical and microbial risks. ILSI Press, Washington (DC), pp 201–219Google Scholar
  84. Stalter D, Dutt M, Escher BI (2013) Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products. Chem Res Toxicol 26(11):1605–1614CrossRefGoogle Scholar
  85. Stalter D, Malley EO, UVon G, Escher BI (2016) Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Res 91:19–30CrossRefGoogle Scholar
  86. Symons GE (2006) Water treatment through the ages. J Am Water Works Assoc 98(3):87–98CrossRefGoogle Scholar
  87. Thier R, Taylort JB, Pemblet SE, Humphreys WG, Persmark M, Ketterert B, Guengerich FP (1993) Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. 90(September):8576–8580Google Scholar
  88. Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2009) Buccal micronucleus cytome assay. Nat Protoc 4:825–837CrossRefGoogle Scholar
  89. USEPA (1999) EPA 815-R-99-014: Alternative disinfectants and oxidants guidance manual. EPA Office of Water, Washington, D.C.Google Scholar
  90. USEPA (2003). IRIS—Integrated Risk Information System, http://www.epa.gov/iriswebp/iris/index/html
  91. Villanueva CM, Kogevinas M, Grimalt JO (2001) Cloración del agua potable y efectos sobre la salud: revisión de estudios epidemiológicos. Med Clin 117(1):27–36CrossRefGoogle Scholar
  92. Villanueva CM, Cantor KP, Grimalt JO, Malats N, Silverman D, Tardon A et al (2007) Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. American J Epidemiol 165(2):148–156CrossRefGoogle Scholar
  93. Wada K, Fukuyama T, Nakashima N, Matsumoto K (2015) Assessment of the in vivo genotoxicity of cadmium chloride , chloroform , and d , l -menthol as coded test chemicals using the alkaline comet assay. Mutat Res 786-788:114–119CrossRefGoogle Scholar
  94. Wang D, Xu Z, Zhao Y, Yan X, Shi J (2011) Change of genotoxicity for raw and finished water: role of purification processes. Chemosphere 83(1):14–20CrossRefGoogle Scholar
  95. Watson K, Shaw G, Leusch FDL, Knight NL (2012) Chlorine disinfection by-products in wastewater effluent: bioassay-based assessment of toxicological impact. Water Res 46(18):6069–6083CrossRefGoogle Scholar
  96. WHO - World Health Organization (2000). Disinfectants and disinfectants by products. Geneva: - United Nations Environment Programme 36-37Google Scholar
  97. WHO - World Health Organization (2011). Guidelines for drinking-water quality. 4. Ed. Geneva: WHOGoogle Scholar
  98. Wu MN, Wang XC, Ma XY (2013) Characteristics of THMFP increase in secondary effluent and its potential toxicity. J Hazard Mater 261:325–331CrossRefGoogle Scholar
  99. Yan M, Li M, Han X (2016) Behaviour of I/Br/Cl-THMs and their projected toxicities under simulated cooking conditions: effects of heating, table salt and residual chlorine. J Hazard Mater 314:105–112CrossRefGoogle Scholar
  100. Yasunaga K, Kiyonari A, Oikawa T, Abe N, Yoshikawa K, Samples NTP et al (2004) Evaluation of the Salmonella umu Test With 83 NTP Chemicals. Environ Mol Mutagen 345:329–345CrossRefGoogle Scholar
  101. Zani C, Feretti D, Buschini A, Poli P, Rossi C, Guzzella L, Di Caterino F, Monarca S (2005) Toxicity and genotoxicity of surface water before and after various potabilization steps. Mutat Res 587(1–2):26–37CrossRefGoogle Scholar
  102. Zheng D,0 Andrews RC, Andrews SA, Taylor-Edmonds L (2015) Effects of oagulation on the removal of natural organic matter, genotoxicity, and precursors to halogenated furanones. Water Res 70: 118–129Google Scholar
  103. Zidane F, Cheggari K, Blais JF, Khlil N (2012) Effect of chlorination on trihalomethanes formation in feed water of Casablanca in Morocco. J Mater Environ Sci 3:99–108Google Scholar
  104. Zoeteman BC, Hrubec J, de Greef E, Kool HJ (1982) Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation. Environ Health Perspect 46:197–205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luciana de Castro Medeiros
    • 1
  • Feliphe Lacerda Souza de Alencar
    • 1
  • Julio Alejandro Navoni
    • 1
    • 2
  • André Luis Calado de Araujo
    • 2
  • Viviane Souza do Amaral
    • 1
    • 3
    Email author
  1. 1.Development and Environment, Bioscience CenterFederal University of Rio Grande do Norte (UFRN), University CampusNatalBrazil
  2. 2.Department of Natural ResourcesFederal Institute of Education, Science and Technology of Rio Grande do NorteNatalBrazil
  3. 3.Department of Cell Biology and Genetics, Center of BiosciencesFederal University of Rio Grande do Norte (UFRN), University CampusNatalBrazil

Personalised recommendations