Environmental Science and Pollution Research

, Volume 26, Issue 32, pp 32687–32697 | Cite as

Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration

  • Linh Duy Nguyen
  • Sana Gassara
  • Minh Quang Bui
  • François Zaviska
  • Philippe Sistat
  • André DerataniEmail author
Green Approaches for Materials, Wastes and Effluents Treatment


The shortage of drinking water is a major problem in the rural areas of the Mekong Delta, especially, when surface water, a main local direct drinking water source is being threatened by pesticide pollution and salinity intrusion. A hybrid process coupling electrodialysis (ED) and nanofiltration (NF) is proposed as an effective process easy to setup in a small plant to treat complex matrix with high salinity and pesticide concentration as is the Mekong Delta surface water. Performance of the ED–NF integration was evaluated with synthetic solutions based on the comparison with a single NF step generally used for pesticide removal. Both energy consumption and water product quality were considered to assess process efficiency. The ED stage was designed to ensure a 50% removal of salinity before applying NF. As expected, the NF rejection is better in the hybrid process than in a case of a single NF step, especially for pesticide rejection. The integration of a NF stage operated with NF270 membrane consumes less energy than that with NF90 membrane but its efficiency was observed not high enough to respect the Vietnamese guidelines. Using NF90, the optimal recovery rate of the NF stage varies from 30 to 50% depending on the salt content in the feed.


Mekong Delta Hybrid process Nanofiltration; Electrodialysis Pesticide Desalination 


Funding information

D. L. Nguyen received funding from the Vietnamese government (VIED—Vietnam International Education Development—Project 911) by the University of Science and Technology of Hanoi (USTH) and also support from the Campus France during his stay in France.


  1. Al-Karaghouli A, Kazmerski LL (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sust Energ Rev 24:343–356. CrossRefGoogle Scholar
  2. Berg P, Hagmeyer G, Gimbel R (1997) Removal of pesticides and other micropollutants by nanofiltration. Desalination 113:205–208. CrossRefGoogle Scholar
  3. Van der Bruggen B, Everaert K, Wilms D, Vandecasteele C (2001) Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. J Membr Sci 193:239–248. CrossRefGoogle Scholar
  4. Van der Bruggen B, Schaep J, Maes W, Wilms D, Vandecasteele C (1998) Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination 117:139–147. CrossRefGoogle Scholar
  5. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445. CrossRefGoogle Scholar
  6. Chau NDG, Sebesvari Z, Amelung W, Renaud FG (2015) Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Pollut Res 22:9042–9058. CrossRefGoogle Scholar
  7. Cyna B, Chagneaub G, Bablon G, Tanghe N (2002) Two years of nanofiltration at the Mery-sur-Oise plant, France. Desalination 147:69–75. CrossRefGoogle Scholar
  8. Escoda A, Fievet P, Lakard S, Szymczyk A, Déon S (2010) Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: pore swelling and salting-out effects. J Membr Sci 347:174–182. CrossRefGoogle Scholar
  9. Galama AH, Saakes M, Bruning H, Rijnaarts HHM, Post JW (2014) Seawater predesalination with electrodialysis. Desalination 342:61–69. CrossRefGoogle Scholar
  10. Van Geluwe S, Braeken L, Robberecht T, Jans M, Creemers C, Van der Bruggen B (2011) Evaluation of electrodialysis for scaling prevention of nanofiltration membranes at high water recoveries. Resour Conserv Recycl 56:34–42. CrossRefGoogle Scholar
  11. Geraldes V, de Pinho MN (1995) Process water recovery from pulp bleaching effluents by an NF/ED hybrid process. J Membr Sci 102:209–221. CrossRefGoogle Scholar
  12. Košutić K, Furač L, Sipos L, Kunst B (2005) Removal of arsenic and pesticides from drinking water by nanofiltration membranes. Sep Purif Technol 42:137–144. CrossRefGoogle Scholar
  13. Liu J, Yuan J, Ji Z, Wang B, Hao Y, Guo X (2016) Concentrating brine from seawater desalination process by nanofiltration–electrodialysis integrated membrane technology. Desalination 390:53–61. CrossRefGoogle Scholar
  14. Miralles-Cuevas S, Oller I, Pérez JAS, Malato S (2014) Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res 64:23–31. CrossRefGoogle Scholar
  15. Nghiem LD, Schäfer a I, Elimelech M (2004) Removal of natural hormones by nanofiltration membranes: measurements, modeling, and mechanisms. Environ Sci Technol 38:1888–1896. CrossRefGoogle Scholar
  16. Nguyen DL (2016) Membrane technology for treatment of surface water in the Mekong Delta. University of Montpellier, PhD DissertationGoogle Scholar
  17. Nguyen, Huu Dung, and Thi Thanh Dung Tran. 1997. Research reports: economic and health consequences of pesticide use in paddy production in the Mekong Delta, Vietnam. International Development Research Centre, Ottawa, Canada.Google Scholar
  18. Nguyen, Ngoc Anh. 2017. Historic drought and salinity intrusion in the Mekong Delta in 2016: lessons learned and response solutions. Vietnam J Sci Technol Eng 60: 93–96. : Scholar
  19. Ormad MP, Miguel N, Claver A, Matesanz JM, Ovelleiro JL (2008) Pesticides removal in the process of drinking water production. Chemosphere 71:97–106. CrossRefGoogle Scholar
  20. Palmeri J, Ben Amar N, Saidani H, Deratani A (2009) Process modeling of brackish and seawater nanofiltration. Desalin Water Treat 9:263–271CrossRefGoogle Scholar
  21. Post JW, Huiting H, Cornelissen ER, Hamelers HVM (2011) Pre-desalination with electro-membranes for SWRO. Desalin Water Treat 31:296–304. CrossRefGoogle Scholar
  22. Reig M, Casas S, Gibert O, Valderrama C, Cortina JL (2016a) Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: production of drinking and waste water treatment chemicals. Desalination 382:13–20. CrossRefGoogle Scholar
  23. Reig M, Casas S, Valderrama C, Gibert O, Cortina JL (2016b) Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base. Desalination 398:87–97. CrossRefGoogle Scholar
  24. Renaud, Fabrice G., and Claudia Kuenzer. 2012. The Mekong Delta system: interdisciplinary analyses of a river delta. Springer. Springer. : Scholar
  25. Sadrzadeh M, Mohammadi T (2008) Sea water desalination using electrodialysis. Desalination 221:440–447. CrossRefGoogle Scholar
  26. Salgın S, Salgın U, Soyer N (2013) Streaming potential measurements of polyethersulfone ultrafiltration membranes to determine salt effects on membrane zeta potential. Int J Electrochem Sci 8:4073–4084Google Scholar
  27. Sarkar B, Venkateshwarlu N, Nageswara Rao R, Bhattacharjee C, Kale V (2007) Potable water production from pesticide contaminated surface water—a membrane based approach. Desalination 204:368–373. CrossRefGoogle Scholar
  28. Sebesvari Z, Le TTH, Pham VT, Arnold U, Renaud FG (2012) Agriculture and water quality in the Vietnamese Mekong Delta. In: Renaud FG, Kuenzer C (eds) The Mekong Delta system, pp 331–361. CrossRefGoogle Scholar
  29. Streit KF, Gerevini GG, Rodrigues MAS, Ferreira JZ, Bernardes AM, De Pinho MN (2013) Electrodialysis in an integrated NF/ED process for water recovery in the leather industry. Sep Sci Technol 48:445–454. CrossRefGoogle Scholar
  30. Teixeira MR, Rosa MJ, Nyström M (2005) The role of membrane charge on nanofiltration performance. J Membr Sci. CrossRefGoogle Scholar
  31. Thanuttamavong M, Yamamoto K, Ik Oh J, Ho Choo K, June Choi S (2002) Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment. Desalination 145:257–264. CrossRefGoogle Scholar
  32. Toan, Pham Van, Zita Sebesvari, Melanie Bläsing, Ingrid Rosendahl, and Fabrice G. Renaud. 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. The Science of the Total Environment 452–453. Elsevier B.V.: 28–39. : Scholar
  33. Ventresque C, Bablon G (1997) The integrated nanofiltration system of the Mery-sur-Oise surface water treatment plant (37 mgd). Desalination 113:263–266CrossRefGoogle Scholar
  34. Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manag 127:177–187. CrossRefGoogle Scholar
  35. Wilbers G-j, Sebesvari Z, Renaud FG (2014b) Piped-water supplies in rural areas of the Mekong Delta, Vietnam: water quality and household perceptions. Water 6:2175–2194. CrossRefGoogle Scholar
  36. Wilbers, Gert Jan, Mathias Becker, La Thi Nga, Zita Sebesvari, and Fabrice G Renaud. 2014a. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. The Science of the Total Environment 485–486. Elsevier B.V.: 653–65. : Scholar
  37. Zhang Y, Van der Bruggen B, Chen GX, Braeken L, Vandecasteele C (2004) Removal of pesticides by nanofiltration: effect of the water matrix. Sep Purif Technol 38:163–172. CrossRefGoogle Scholar
  38. Zhang Y, Causserand C, Aimar P, Cravedi JP (2006) Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res 40:3793–3799. CrossRefGoogle Scholar
  39. Zhao Y, Xing W, Xu N, Wong F-S (2005) Effects of inorganic electrolytes on zeta potentials of ceramic microfiltration membranes. Sep Purif Technol 42:117–121. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Linh Duy Nguyen
    • 1
    • 2
  • Sana Gassara
    • 1
  • Minh Quang Bui
    • 2
  • François Zaviska
    • 1
  • Philippe Sistat
    • 1
  • André Deratani
    • 1
    Email author
  1. 1.Institut Européen des Membranes—IEM, UMR-5635, ENSCM, CNRSUniv MontpellierMontpellierFrance
  2. 2.Institute of Environmental Technology, Vietnam Academy of Science and Technology (IET-VAST)HanoiVietnam

Personalised recommendations