Advertisement

MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution

  • Wei Liao
  • Huilin Wang
  • Feize Li
  • Changsong Zhao
  • Jun Liu
  • Jiali Liao
  • Jijun Yang
  • Yuanyou Yang
  • Ning Liu
Research Article
  • 103 Downloads

Abstract

A low-cost industrial microorganism, Saccharomyces cerevisiae, was employed as a precursor to synthesize carbon/MnO2 composites (MMCs) via an oxidation-reduction reaction and one-step carbonization method for U(VI) adsorption. Scanning electron microscopy and nitrogen adsorption measurement indicated that the microorganism’s carbonization could form surface porous structure and increase the specific surface area. Batch experiments showed that the maximum U(VI) adsorption capacity of MMCs reached 207 mg g−1 at [U(VI)]initial = 25 mg L−1 and pHinitial = 4.5. The obtained thermodynamic and kinetic parameters suggested that the process is endothermic, spontaneous, and chemisorption. FTIR and X-ray photoelectron spectroscopy demonstrated that the surface hydroxyl groups of composites might be the reactive adsorption sites for U(VI). Additionally, 0.5 mol L−1 HNO3 solution could desorb ~ 95% uranium from U(VI)-loaded MMCs, and materials exhibited good regenerated availability. This study suggests that MMCs can be a potential adsorbent for U(VI) preconcentration and removal from radioactive wastewater.

Keywords

Saccharomyces cerevisiae Carbon/MnO2 composites U(VI) Adsorption 

Notes

Funding information

We greatly appreciate the financial support from the National Natural Science Foundation of China (Grant Nos. 21876122 and 21876123), the National Fund of China for Fostering Talents in Basic Science (J1210004), and the Joint Funds of National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF, Grant No. U1330125).

References

  1. Bai B, Wang P, Wu L, Yang L, Chen Z (2009) A novel yeast bio-template route to synthesize Cr2O3 hollow microspheres. Mater Chem Phys 114:26–29CrossRefGoogle Scholar
  2. Banerjee SS, Chen DH (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799CrossRefGoogle Scholar
  3. Calderon Rosas CA, Franzreb M, Valenzuela F, Höll WH (2010) Magnetic manganese dioxide as an amphoteric adsorbent for removal of harmful inorganic contaminants from water. React Funct Polym 70:516–520CrossRefGoogle Scholar
  4. Carboni M, Abney CW, Taylor-Pashow KML, Vivero-Escoto JL, Lin W (2013) Uranium sorption with functionalized mesoporous carbon materials. Ind Eng Chem Res 52:15187–15197CrossRefGoogle Scholar
  5. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330CrossRefGoogle Scholar
  6. Donia AM, Atia AA, Moussa EMM, El-Sherif AM, El-Magied MOA (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189CrossRefGoogle Scholar
  7. Du D, Huang X, Cai J, Zhang A, Ding J, Chen S (2007) An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Anal Bioanal Chem 387:1059–1065CrossRefGoogle Scholar
  8. Eloussaief M, Sdiri A, Benzina M (2013) Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environ Sci Pollut Res 20:469–479CrossRefGoogle Scholar
  9. Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333CrossRefGoogle Scholar
  10. Hadjltaief HB, Sdiri A, Ltaief W, Da Costa P, Galvez ME, Ben Zina M (2018) Efficient removal of cadmium and 2-chlorophenol in aqueous systems by natural clay: adsorption and photo-Fenton degradation processes. Comptes Rendus Chimie 21:253–262CrossRefGoogle Scholar
  11. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143CrossRefGoogle Scholar
  12. He JD, Wang YD, Hu N, Ding D, Sun J, Deng QW, Li CW, Xu F (2015) An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater. Environ Sci Pollut Res 22:18918–18926CrossRefGoogle Scholar
  13. Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47CrossRefGoogle Scholar
  14. Jo W, Freedman KJ, Yi DK, Kim MJ (2012) Fabrication of tunable silica-mineralized nanotubes using flagella as bio-templates. Nanotechnology 23:055601CrossRefGoogle Scholar
  15. Kausar A, Bhatti HN, MacKinnon G (2013) Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloids Surf B: Biointerfaces 111:124–133CrossRefGoogle Scholar
  16. Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300CrossRefGoogle Scholar
  17. Kryvoruchko AP, Yurlova LY, Atamanenko ID, Kornilovich BY (2004) Ultrafiltration removal of U(VI) from contaminated water. Desalination 162:229–236CrossRefGoogle Scholar
  18. Li ZP, Mi YJ, Liu XH, Liu S, Yang SR, Wang JQ (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21:14706–14711CrossRefGoogle Scholar
  19. Li F, Li D, Li X, Liao J, Li S, Yang J, Yang Y, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639CrossRefGoogle Scholar
  20. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446CrossRefGoogle Scholar
  21. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441CrossRefGoogle Scholar
  22. Mkandawire M (2013) Biogeochemical behaviour and bioremediation of uranium in waters of;abandoned mines. Environ Sci Pollut Res 20:7740–7767CrossRefGoogle Scholar
  23. Moghaddam HK, Pakizeh M (2015) Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. J Ind Eng Chem 21:221–229CrossRefGoogle Scholar
  24. Moulin C, Decambox P, Moulin V, Decaillon JG (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence. Anal Chem 67:348–353CrossRefGoogle Scholar
  25. Owlad M, Aroua MK, Daud WAW, Baroutian S (2008) Removal of hexavalent chromium-contaminated water and wastewater: A Review. Water Air Soil Pollut 200:59–77CrossRefGoogle Scholar
  26. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interf Sci 152:2–13CrossRefGoogle Scholar
  27. Ren Y, Yan N, Wen Q, Fan Z, Wei T, Zhang M, Ma J (2011) Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J 175:1–7CrossRefGoogle Scholar
  28. Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environmental Science. Pollut Res 19:1224–1228CrossRefGoogle Scholar
  29. Sdiri AT, Higashi T, Jamoussi F (2014) Adsorption of copper and zinc onto natural clay in single and binary systems. Int J Environ Sci Technol 11:1081–1092CrossRefGoogle Scholar
  30. Sdiri A, Khairy M, Bouaziz S, El-Safty S (2016) A natural clayey adsorbent for selective removal of lead from aqueous solutions. Appl Clay Sci 126:89–97CrossRefGoogle Scholar
  31. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250CrossRefGoogle Scholar
  32. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478CrossRefGoogle Scholar
  33. Wan SL, He F, Wu JY, Wan WB, Gu YW, Gao B (2016) Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J Hazard Mater 314:32–40CrossRefGoogle Scholar
  34. Wang SG, Gong WX, Liu XW, Yao YW, Gao BY, Yue QY (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–23CrossRefGoogle Scholar
  35. Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265:126–134CrossRefGoogle Scholar
  36. Xie XF, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45:2365–2373CrossRefGoogle Scholar
  37. Yang X, Li J, Liu J, Tian Y, Li B, Cao K, Liu S, Hou M, Li S, Ma L (2014) Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J Mater Chem A 2:1550–1559CrossRefGoogle Scholar
  38. Yuan AB, Zhang QL (2006) A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun 8:1173–1178CrossRefGoogle Scholar
  39. Zhang L, Wu HB, Yan Y, Wang X, Lou XW (2014) Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ Sci 7:3302–3306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Liao
    • 1
  • Huilin Wang
    • 1
  • Feize Li
    • 1
  • Changsong Zhao
    • 1
  • Jun Liu
    • 1
    • 2
  • Jiali Liao
    • 1
  • Jijun Yang
    • 1
  • Yuanyou Yang
    • 1
  • Ning Liu
    • 1
  1. 1.Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduPeople’s Republic of China
  2. 2.College of Nuclear Technology and Automation EngineeringChengdu University of TechnologyChengduPeople’s Republic of China

Personalised recommendations