Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3262–3291 | Cite as

Synthesis and applications of nano-TiO2: a review

  • Muhammad Tayyab NomanEmail author
  • Muhammad Azeem Ashraf
  • Azam Ali
Review Article

Abstract

TiO2-based nanomaterials have attracted prodigious attention as a photocatalysts in numerous fields of applications. In this thematic issue, the mechanism behind the photocatalytic activity of nano-TiO2 as well as the critical properties have been reviewed in details. The synthesis routes and the variables that affect the size and crystallinity of nano-TiO2 have also been discussed in detail. Moreover, a newly emerged class of color TiO2, TiO2 in aerogel form, nanotubes form, doped and undoped form, and other forms of TiO2 have been discussed in details. Photocatalytic and photovoltaic applications and the type of nano-TiO2 that is more suitable for these applications have been discussed in this review.

Keywords

Nano-TiO2 Photocatalysis Photovoltaic Nanocomposites DSSC 

Abbreviations

NPs

Nanoparticles

NMs

Nanomaterials

SEM

Scanning electron microscopy

EDX

Energy dispersive X-ray spectroscopy

TTC

Titanium tetrachloride

TTIP

Titanium tetraisopropoxide

EG

Ethylene glycol

MB

Methylene blue

TEM

Transmission electron microscopy

TiO2

Titanium dioxide, titania

RNP

Resulting nanoparticles

XRD

X-ray diffractometry

UV

Ultraviolet

nm

Nanometer

mL

Milliliter

h

Hour

°C

Degree Celsius

K

Kelvin

MPa

Megapascals

Ks−1

Kelvin per second

mj m−2

Millijoule per square meter

TiCl4

Titanium tetrachloride

m2 g−1

Meter square per gram

eV

Electron volts

OH·

Hydroxyl radical

·O2

Super oxide anion

Ti

Titanium

°

Degree

S. aureus

Staphylococcus aureus

E. coli

Escherichia coli

JCPDS

Joint Committee on Powder Diffraction Standards

N2

Nitrogen dioxide

CO2

Carbon dioxide

COD

Chemical oxygen demand

ROS

Reactive oxygen species

IR

Infrared

3D

Three dimensional

2D

Two dimensional

V

Volts

EPR

Electron paramagnetic resonance

TNTs

TiO2 nanotubes

TEOH

Triethanol amine

pH

Power of hydrogen

C. albicans

Candida albicans

MO

Methyl orange

RB

Rhodamine B

HRTEM

High-resolution transmission electron microscope

CHFS

Continuous hydrothermal flow synthesis

FTO

Fluorine-doped tin oxide

AFM

Atomic force microscopy

TENOH

Tetraethylammonium hydroxides

TANOH

Tetraalkylammonium hydroxides

Ag

Silver

Fe

Ferric

Au

Gold

TBNOH

Tetrabutylammonium hydroxides

NaOH

Sodium hydroxide

P25

Commercially available TiO2

EN

Ethylenediamine

FSP

Flame spray pyrolysis

TGA-DTA

Thermogravimetric-differential thermal analysis

Cu

Copper

BTCA

Butane tetracarboxylic acid

CA

Citric acid

NDMA

N-Nitrosodimethylamine

DSSC

Dye-sensitized solar cell

QDSSC

Quantum dot-sensitized solar cell

DSPC

Dye-sensitized photoelectrochemical cell

FTIR

Fourier transform infrared spectroscopy

ηSUN

Solar light-to-power conversion efficiency

JSC

Short-circuit photocurrent

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adnan M, Moses JJ (2013) Investigations on the effects of UV finishes using titanium dioxide on silk and lyocell union fabrics. J Text Appar Tech Managem 8(2):1–12Google Scholar
  2. Afshar M, Badiei A, Eskandarloo H, Ziarani GM (2016) Charge separation by tetrahexahedron-SrTiO3/TiO2 heterojunction as an efficient photocatalyst. Res Chem Intermed 42:7269–7284Google Scholar
  3. Al-Alwani MA, Mohamad AB, Kadhum AAH, Ludin NA (2015) Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications. Spectrochim Acta A 138:130–137Google Scholar
  4. Anderson MA, Gieselmann MJ, Xu Q (1988) Titania and alumina ceramic membranes. J Membr Sci 39:243–258Google Scholar
  5. Andersson M, Österlund L, Ljungström S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679Google Scholar
  6. Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310Google Scholar
  7. Arain RA, Khatri Z, Memon MH, Kim I-S (2013) Antibacterial property and characterization of cotton fabric treated with chitosan/AgCl–TiO2 colloid. Carbohydr Polym 96:326–331Google Scholar
  8. Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad S (2007) Sonochemical preparation of TiO2 nanoparticles. Mater Lett 61:4559–4561Google Scholar
  9. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852Google Scholar
  10. Ashraf MA, Wiener J, Farooq A, Saskova J, Noman MT (2018) Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym 19:1735–1746Google Scholar
  11. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176Google Scholar
  12. Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114:10095–10130Google Scholar
  13. Banfield J (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076Google Scholar
  14. Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80:3157–3171Google Scholar
  15. Barnard A, Curtiss L (2005) Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 5:1261–1266Google Scholar
  16. Barnard AS, Zapol P (2004) Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Phys Rev B 70(1–13):235403Google Scholar
  17. Behnajady MA, Eskandarloo H (2015) Preparation of TiO2 nanoparticles by the sol-gel method under different pH conditions and modeling of photocatalytic activity by artificial neural network. Res Chem Intermed 41:2001–2017Google Scholar
  18. Behnajady M, Eskandarloo H, Modirshahla N, Shokri M (2011a) Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278:10–17Google Scholar
  19. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011b) Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity. Photochem Photobiol 87:1002–1008Google Scholar
  20. Behzadnia A, Montazer M, Rashidi A, Mahmoudi Rad M (2014a) Rapid sonosynthesis of N-doped nano TiO2 on wool fabric at low temperature: introducing self-cleaning, hydrophilicity, antibacterial/antifungal properties with low alkali solubility, yellowness and cytotoxicity. Photochem Photobiol 90:1224–1233Google Scholar
  21. Behzadnia A, Montazer M, Rashidi A, Rad MM (2014b) Sonosynthesis of nano TiO2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric. Ultrason Sonochem 21:1815–1826Google Scholar
  22. Berger T, Sterrer M, Diwald O, Knözinger E, Panayotov D, Thompson TL, Yates JT (2005) Light-induced charge separation in anatase TiO2 particles. J Phys Chem B 109:6061–6068Google Scholar
  23. Bessekhouad Y, Robert D, Weber JV (2003) Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol A Chem 157:47–53Google Scholar
  24. Blešić MD, Šaponjić Z, Nedeljković J, Uskoković D (2002) TiO2 films prepared by ultrasonic spray pyrolysis of nanosize precursor. Mater Lett 54:298–302Google Scholar
  25. Bourikas K, Kordulis C, Lycourghiotis A (2014) Titanium dioxide (anatase and rutile): surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts. Chem Rev 114:9754–9823Google Scholar
  26. Braginsky L, Shklover V (1999) Light absorption in TiO2 nanoparticles. Eur Phys J D 9:627–630Google Scholar
  27. Cai H, Mu W, Liu W, Zhang X, Deng Y (2015) Sol-gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates. Inorg Chem Commun 51:71–74Google Scholar
  28. Caratto V, Locardi F, Alberti S, Villa S, Sanguineti E, Martinelli A, Balbi T, Canesi L, Ferretti M (2016) Different sol-gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity. J Sol-Gel Sci Technol 80:152–159Google Scholar
  29. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319–9345Google Scholar
  30. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15:3326–3331Google Scholar
  31. Chemseddine A, Moritz T (1999) Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. Eur J Inorg Chem 1999:235–245Google Scholar
  32. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959Google Scholar
  33. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948Google Scholar
  34. Chibac AL, Melinte V, Buruiana T, Mangalagiu I, Buruiana EC (2015) Preparation of photocrosslinked sol-gel composites based on urethane-acrylic matrix, silsesquioxane sequences, TiO2, and Ag/Au nanoparticles for use in photocatalytic applications. J Polym Sci A Polym Chem 53:1189–1204Google Scholar
  35. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679Google Scholar
  36. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591Google Scholar
  37. Coppens P, Chen Y, Trzop EB (2014) Crystallography and properties of polyoxotitanate nanoclusters. Chem Rev 114:9645–9661Google Scholar
  38. Cot F, Larbot A, Nabias G, Cot L (1998) Preparation and characterization of colloidal solution derived crystallized titania powder. J Eur Ceram Soc 18:2175–2181Google Scholar
  39. Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889Google Scholar
  40. De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A (2014) Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem Rev 114:9708–9753Google Scholar
  41. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229Google Scholar
  42. Doakhan S, Montazer M, Rashidi A, Moniri R, Moghadam M (2013) Influence of sericin/TiO2 nanocomposite on cotton fabric: part 1. Enhanced antibacterial effect. Carbohydr Polym 94:737–748Google Scholar
  43. Dominguez R, Alarcón-Flores G, Aguilar-Frutis M, Sánchez-Alarcón R, Falcony C, Dorantes-Rosales H, González-Velázquez J, Rivas-López D (2016) Effect on the stabilization of the anatase phase and luminescent properties of samarium-doped TiO2 nanocrystals prepared by microwave irradiation. J Alloys Compd 687:121–129Google Scholar
  44. Dong R, Jiang S, Li Z, Chen Z, Zhang H, Jin C (2015) Superhydrophilic TiO2 nanorod films with variable morphology grown on different substrates. Mater Lett 152:151–154Google Scholar
  45. Dougna AA, Gombert B, Kodom T, Djaneye-Boundjou G, Boukari SO, Leitner NKV, Bawa LM (2015) Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: effect of inorganic oxidants. J Photochem Photobiol A Chem 305:67–77Google Scholar
  46. El-Roz M, Haidar Z, Lakiss L, Toufaily J, Thibault-Starzyk F (2013) Immobilization of TiO2 nanoparticles on natural Luffa cylindrica fibers for photocatalytic applications. RSC Adv 3:3438–3445Google Scholar
  47. El-Shafei A, ElShemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym 118:83–90Google Scholar
  48. Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM (2014) Minimization of electrical energy consumption in the photocatalytic reduction of Cr (VI) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles. RSC Adv 4:28587–28596Google Scholar
  49. Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM (2015) Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency. Ultrason Sonochem 26:281–292Google Scholar
  50. Eskandarloo H, Badiei A, Behnajady MA, Tavakoli A, Ziarani GM (2016) Ultrasonic-assisted synthesis of Ce doped cubic–hexagonal ZnTiO3 with highly efficient sonocatalytic activity. Ultrason Sonochem 29:258–269Google Scholar
  51. Eskandarloo H, Zaferani M, Kierulf A, Abbaspourrad A (2018) Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. Appl Catal B 227:519–529Google Scholar
  52. Fan Z, Meng F, Gong J, Li H, Ding Z, Ding B (2016) One-step hydrothermal synthesis of mesoporous Ce-doped anatase TiO2 nanoparticles with enhanced photocatalytic activity. J Mater Sci Mater Electron (11):11866–11872Google Scholar
  53. Fathy M, Hamad H, Kashyout AEH (2016) Influence of calcination temperatures on the formation of anatase TiO2 nano rods with a polyol-mediated solvothermal method. RSC Adv 6:7310–7316Google Scholar
  54. Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114:9487–9558Google Scholar
  55. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44:5115–5118Google Scholar
  56. Ferber J, Luther J (1998) Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol Energy Mater Sol Cells 54:265–275Google Scholar
  57. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21Google Scholar
  58. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582Google Scholar
  59. Gaminian H, Montazer M (2015) Enhanced self-cleaning properties on polyester fabric under visible light through single-step synthesis of cuprous oxide doped nano-TiO2. Photochem Photobiol 91:1078–1087Google Scholar
  60. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55Google Scholar
  61. Ghanem A, Badawy A, Ismail N, Tian ZR, Rehim MA, Rabia A (2014) Photocatalytic activity of hyperbranched polyester/TiO2 nanocomposites. Appl Catal A 472:191–197Google Scholar
  62. Gokilamani N, Muthukumarasamy N, Thambidurai M, Ranjitha A, Velauthapillai D (2014) Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Appl Nanosci 5:297Google Scholar
  63. Gomez M, Lu J, Olsson E, Hagfeldt A, Granqvist C (2000) High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films. Sol Energy Mater Sol Cells 64:385–392Google Scholar
  64. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4:145–153Google Scholar
  65. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14Google Scholar
  66. Gu F, Huang W, Wang S, Cheng X, Hu Y, Li C (2014) Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame. J Power Sources 268:922–927Google Scholar
  67. Guo W, Lin Z, Wang X, Song G (2003) Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectron Eng 66:95–101Google Scholar
  68. Guo X, Li Q, Zhang M, Long M, Kong L, Zhou Q, Shao H, Hu W, Wei T (2015) Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen. Chemosphere 120:521–526Google Scholar
  69. Gupta KK, Jassal M, Agrawal AK (2007) Functional finishing of cotton using titanium dioxide and zinc oxide nanoparticles. Res J Text Appar 11:1–10Google Scholar
  70. Harifi T, Montazer M (2014) Fe3+: Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl Catal A 473:104–115Google Scholar
  71. He H-Y (2016) Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous Mesoporous Mater 227:31–38Google Scholar
  72. He H-Y (2017a) Efficient hydrogen evolution activity of 1T-MoS2/Si-doped TiO2 nanotube hybrids. Int J Hydrog Energy 42:20739–20748Google Scholar
  73. He H-Y (2017b) Facile synthesis of Bi2S3 nanocrystalline-modified TiO2: Fe nanotubes hybrids and their photocatalytic activities in dye degradation. Part Sci Technol 35:410–417Google Scholar
  74. He H-Y, Chen P (2012) Recent advances in property enhancement of nano TiO2 in photodegradation of organic pollutants. Chem Eng Commun 199:1543–1574Google Scholar
  75. He Z, He H (2011) Synthesis and photocatalytic property of N-doped TiO2 nanorods and nanotubes with high nitrogen content. Appl Surf Sci 258:972–976Google Scholar
  76. He H-Y, Tian C-Y (2016) Rapid photo- and photo-Fenton-like catalytic removals of malachite green in aqueous solution on undoped and doped TiO2 nanotubes. Desalin Water Treat 57:14622–14631Google Scholar
  77. He H-Y, He Z, Shen Q (2018) TiO2: Si nanotube/1T-MoSe2 nanosheet hybrids with highly efficient hydrogen evolution catalytic activity. J Colloid Interface Sci 522:136–143Google Scholar
  78. Hebeish A, Abdelhady M, Youssef A (2013) TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydr Polym 91:549–559Google Scholar
  79. Henderson MA, Lyubinetsky I (2013) Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2 (110). Chem Rev 113:4428–4455Google Scholar
  80. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873Google Scholar
  81. Hossain MK, Akhtar US, Koirala AR, Hwang IC, Yoon KB (2015) Steam-assisted synthesis of uniformly mesoporous anatase and its remarkably superior photocatalytic activities. Catal Today 243:228–234Google Scholar
  82. Hurum DC, Gray KA, Rajh T, Thurnauer MC (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109:977–980Google Scholar
  83. Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619Google Scholar
  84. Jang I, Song K, Park J-H, Oh S-G (2013) Enhancement of dye adsorption on TiO2 surface through hydroxylation process for dye-sensitized solar cells. Bull Kor Chem Soc 34:2883–2888Google Scholar
  85. Jhuang Y-Y, Cheng W-T (2016) Fabrication and characterization of silver/titanium dioxide composite nanoparticles in ethylene glycol with alkaline solution through sonochemical process. Ultrason Sonochem 28:327–333Google Scholar
  86. Jiu J, Isoda S, Adachi M, Wang F (2007) Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell. J Photochem Photobiol A Chem 189:314–321Google Scholar
  87. Kadam A, Dhabbe R, Kokate M, Gaikwad Y, Garadkar K (2014) Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of malathion. Spectrochim Acta A 133:669–676Google Scholar
  88. Kale R, Meena CR (2012) Synthesis of titanium dioxide nanoparticles and application on nylon fabric using layer by layer technique for antimicrobial property. Adv Appl Sci Res 3:3073–3080Google Scholar
  89. Kalpagam S, Kannadasan T (2014) Preparation of titanium dioxide nanoparticles and its application in wastewater treatment. J Chem Biol Phy Sci 4:1936Google Scholar
  90. Kapilashrami M, Zhang Y, Liu Y-S, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–9707Google Scholar
  91. Karahaliloglu Z, Hacker C, Demirbilek M, Seide G, Denkbas EB, Gries T (2014) Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles. J Nanopart Res 16:1Google Scholar
  92. Kobayashi M (2016) Synthesis and development of titania with controlled structures. J Ceram Soc Jpn 124:863–869Google Scholar
  93. Kolen'ko YV, Maximov V, Burukhin A, Muhanov V, Churagulov B (2003) Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Mater Sci Eng C 23:1033–1038Google Scholar
  94. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114:9385–9454Google Scholar
  95. Li M, Jiang Y, Ding R, Song D, Yu H, Chen Z (2013) Hydrothermal synthesis of anatase TiO2 nanoflowers on a nanobelt framework for photocatalytic applications. J Electron Mater 42:1290–1296Google Scholar
  96. Li D, Wang H, Jing W, Fan Y, Xing W (2014) Fabrication of mesoporous TiO2 membranes by a nanoparticle-modified polymeric sol process. J Colloid Interface Sci 433:43–48Google Scholar
  97. Liu L, Chen X (2014) Titanium dioxide nanomaterials: self-structural modifications. Chem Rev 114:9890–9918Google Scholar
  98. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014a) Titanium dioxide crystals with tailored facets. Chem Rev 114:9559–9612Google Scholar
  99. Liu K, Cao M, Fujishima A, Jiang L (2014b) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094Google Scholar
  100. Liu X, Fang J, Gao M, Wang H, Yang W, Lin T (2015) Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode. Mater Chem Phys 151:330–336Google Scholar
  101. Look JL, Zukoski C (1995) Colloidal stability and titania precipitate morphology: influence of short-range repulsions. J Am Ceram Soc 78:21–32Google Scholar
  102. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043Google Scholar
  103. Makwana NM, Tighe CJ, Gruar RI, McMillan PF, Darr JA (2016) Pilot plant scale continuous hydrothermal synthesis of nano-titania; effect of size on photocatalytic activity. Mater Sci Semicond Process 42:131–137Google Scholar
  104. Mashreghi A, Ghasemi M (2015) Investigating the effect of molar ratio between TiO2 nanoparticles and titanium alkoxide in Pechini based TiO2 paste on photovoltaic performance of dye-sensitized solar cells. Renew Energy 75:481–488Google Scholar
  105. Meskin PE, Ivanov VK, Barantchikov AE, Churagulov BR, Tretyakov YD (2006) Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrason Sonochem 13:47–53Google Scholar
  106. Mohammadi M, Fray D, Mohammadi A (2008) Sol–gel nanostructured titanium dioxide: controlling the crystal structure, crystallite size, phase transformation, packing and ordering. Microporous Mesoporous Mater 112:392–402Google Scholar
  107. Montazer M, Behzadnia A, Pakdel E, Rahimi MK, Moghadam MB (2011a) Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J Photochem Photobiol B Biol 103:207–214Google Scholar
  108. Montazer M, Pakdel E, Behzadnia A (2011b) Novel feature of nano-titanium dioxide on textiles: antifelting and antibacterial wool. J Appl Polym Sci 121:3407–3413Google Scholar
  109. Moritz T, Reiss J, Diesner K, Su D, Chemseddine A (1997) Nanostructured crystalline TiO2 through growth control and stabilization of intermediate structural building units. J Phys Chem B 101:8052–8053Google Scholar
  110. Mutuma BK, Shao GN, Kim WD, Kim HT (2015) Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. J Colloid Interface Sci 442:1–7Google Scholar
  111. Nawaz M, Miran W, Jang J, Lee DS (2017) One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl Catal B 203:85–95Google Scholar
  112. Noman MT, Ashraf MA, Jamshaid H, Ali A (2018a) A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym 19:2268–2277Google Scholar
  113. Noman MT, Militky J, Wiener J, Saskova J, Ashraf MA, Jamshaid H, Azeem M (2018b) Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics 83:203–213Google Scholar
  114. Noman MT, Wiener J, Saskova J, Ashraf MA, Vikova M, Jamshaid H, Kejzlar P (2018c) In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason Sonochem 40:41–56Google Scholar
  115. O’regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740Google Scholar
  116. Oskam G, Nellore A, Penn RL, Searson PC (2003) The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J Phys Chem B 107:1734–1738Google Scholar
  117. Pang CL, Lindsay R, Thornton G (2013) Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem Rev 113:3887–3948Google Scholar
  118. Perelshtein I, Applerot G, Perkas N, Grinblat J, Gedanken A (2012) A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. Chem Eur J 18:4575–4582Google Scholar
  119. Perera V, Pitigala P, Senevirathne M, Tennakone K (2005) A solar cell sensitized with three different dyes. Sol Energy Mater Sol Cells 85:91–98Google Scholar
  120. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266Google Scholar
  121. Píšťková V, Tasbihi M, Vávrová M, Štangar UL (2015) Photocatalytic degradation of β-blockers by using immobilized titania/silica on glass slides. J Photochem Photobiol A Chem 305:19–28Google Scholar
  122. Prasad K, Pinjari D, Pandit A, Mhaske S (2010) Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17:697–703Google Scholar
  123. Qi K, Daoud WA, Xin JH, Mak C, Tang W, Cheung W (2006) Self-cleaning cotton. J Mater Chem 16:4567–4574Google Scholar
  124. Qiu S, Kalita SJ (2006) Synthesis, processing and characterization of nanocrystalline titanium dioxide. Mater Sci Eng A 435:327–332Google Scholar
  125. Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V (2014) Titanium dioxide in the service of the biomedical revolution. Chem Rev 114:10177–10216Google Scholar
  126. Roy AS, Parveen A, Koppalkar AR, Prasad MA (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37–41Google Scholar
  127. Sadr FA, Montazer M (2014) In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason Sonochem 21:681–691Google Scholar
  128. Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc 126:5851–5858Google Scholar
  129. Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem Rev 114:9283–9318Google Scholar
  130. Sarkar D, Chattopadhyay KK (2014) Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property. ACS Appl Mater Interfaces 6:10044–10059Google Scholar
  131. Sato H, Ono K, Sasaki T, Yamagishi A (2003) First-principles study of two-dimensional titanium dioxides. J Phys Chem B 107:9824–9828Google Scholar
  132. Sattarfard R, Behnajady MA, Eskandarloo H (2018) Hydrothermal synthesis of mesoporous TiO2 nanotubes and their adsorption affinity toward basic violet 2. J Porous Mater 25:359–371Google Scholar
  133. Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol Energy Mater Sol Cells 80:47–71Google Scholar
  134. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986Google Scholar
  135. Senić Ž, Bauk S, Vitorović-Todorović M, Pajić N, Samolov A, Rajić D (2011) Application of TiO2 nanoparticles for obtaining self-decontaminating smart textiles. Sci Technol Rev 61:63–72Google Scholar
  136. Subramanian A, Wang H-W (2014) Hierarchical multilayer-structured TiO2 electrode for dye-sensitized solar cells. J Photochem Photobiol A Chem 279:32–37Google Scholar
  137. Sugimoto T, Okada K, Itoh H (1997) Synthetic of uniform spindle-type titania particles by the gel-sol method. J Colloid Interface Sci 193:140–143Google Scholar
  138. Sugimoto T, Zhou X, Muramatsu A (2003a) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method: 3. Formation process and size control. J Colloid Interface Sci 259:43–52Google Scholar
  139. Sugimoto T, Zhou X, Muramatsu A (2003b) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method: 4. Shape control. J Colloid Interface Sci 259:53–61Google Scholar
  140. Suslick KS (1986) Ultrasound in synthesis, modern synthetic methods 1986. Springer, pp 1–60Google Scholar
  141. Szczepankiewicz SH, Colussi A, Hoffmann MR (2000) Infrared spectra of photoinduced species on hydroxylated titania surfaces. J Phys Chem B 104:9842–9850Google Scholar
  142. Teoh WY, Mädler L, Beydoun D, Pratsinis SE, Amal R (2005) Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chem Eng Sci 60:5852–5861Google Scholar
  143. Teoh WY, Amal R, Mädler L, Pratsinis SE (2007) Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal Today 120:203–213Google Scholar
  144. Tesfmichael T, Will G, Bell J, Prince K, Dytlewski N (2003) Characterization of a commercial dye-sensitised titania solar cell electrode. Sol Energy Mater Sol Cells 76(1):25–35Google Scholar
  145. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106:4428–4453Google Scholar
  146. Uddin M, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) Photoactive TiO2 films on cellulose fibres: synthesis and characterization. J Photochem Photobiol A Chem 189:286–294Google Scholar
  147. Ullattil SG, Periyat P (2015) Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn (ii) as ‘anatase phase purifier’. Nanoscale 7:19184–19192Google Scholar
  148. Ullattil SG, Periyat P (2016) A ‘one pot’gel combustion strategy towards Ti3+ self-doped ‘black’anatase TiO2−x solar photocatalyst. J Mater Chem A 4:5854–5858Google Scholar
  149. Ullattil SG, Narendranath SB, Pillai SC, Periyat P (2018) Black TiO2 nanomaterials: a review of recent advances. Chem Eng J 343:708–736Google Scholar
  150. Valencia S, Vargas X, Rios L, Restrepo G, Marín JM (2013) Sol-gel and low-temperature solvothermal synthesis of photoactive nano-titanium dioxide. J Photochem Photobiol A Chem 251:175–181Google Scholar
  151. Velhal S, Kulakrni S, Jaybhaye R (2014) Titanium dioxide nanoparticles for control of microorganisms. IJRCE 4Google Scholar
  152. Wang L, Sasaki T (2014) Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114:9455–9486Google Scholar
  153. Wang N, Li J, Zhu L, Dong Y, Tang H (2008a) Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process. J Photochem Photobiol A Chem 198:282–287Google Scholar
  154. Wang P, Xie T, Peng L, Li H, Wu T, Pang S, Wang D (2008b) Water-assisted synthesis of anatase TiO2 nanocrystals: mechanism and sensing properties to oxygen at room temperature. J Phys Chem C 112:6648–6652Google Scholar
  155. Wang H, Guo Z, Wang S, Liu W (2014a) One-dimensional titania nanostructures: synthesis and applications in dye-sensitized solar cells. Thin Solid Films 558:1–19Google Scholar
  156. Wang L, Cai Y, Song L, Nie W, Zhou Y, Chen P (2014b) High efficient photocatalyst of spherical TiO2 particles synthesized by a sol-gel method modified with glycol. Colloids Surf A Physicochem Eng Asp 461:195–201Google Scholar
  157. Wang X, Li Z, Shi J, Yu Y (2014c) One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 114:9346–9384Google Scholar
  158. Wang B, de Godoi FC, Sun Z, Zeng Q, Zheng S, Frost RL (2015a) Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J Colloid Interface Sci 438:204–211Google Scholar
  159. Wang D, Li Y, Puma GL, Wang C, Wang P, Zhang W, Wang Q (2015b) Dye-sensitized photoelectrochemical cell on plasmonic Ag/AgCl@ chiral TiO2 nanofibers for treatment of urban wastewater effluents, with simultaneous production of hydrogen and electricity. Appl Catal B 168:25–32Google Scholar
  160. Wei X, Cai H, Feng Q, Liu Z, Ma D, Chen K, Huang Y (2018) Synthesis of co-existing phases Sn-TiO2 aerogel by ultrasonic-assisted sol-gel method without calcination. Mater Lett 228:379–383Google Scholar
  161. Wiener J, Shahidi S, Goba M (2013) Laser deposition of TiO2 nanoparticles on glass fabric. Opt Laser Technol 45:147–153Google Scholar
  162. Wight A, Davis M (2002) Design and preparation of organic–inorganic hybrid catalysts. Chem Rev 102:3589–3614Google Scholar
  163. Wu D, Long M, Zhou J, Cai W, Zhu X, Chen C, Wu Y (2009) Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coat Technol 203:3728–3733Google Scholar
  164. Wu W-Q, Lei B-X, Rao H-S, Xu Y-F, Wang Y-F, Su C-Y, Kuang D-B (2013) Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 3Google Scholar
  165. Wu D, Zhang S, Jiang S, He J, Jiang K (2015) Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells. J Alloys Compd 624:94–99Google Scholar
  166. Xiao X, Liu X, Cao G, Zhang C, Xia L, Xu W, Xiao S (2015) Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection. Polym Eng Sci 55:1296–1302Google Scholar
  167. Xie G, Lin J, Wu J, Lan Z, Li Q, Xiao Y, Yue G, Yue H, Huang M (2011) Application of upconversion luminescence in dye-sensitized solar cells. Chin Sci Bull 56:96–101Google Scholar
  168. Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sources 286:561–570Google Scholar
  169. Xue B, Sun T, J-k W, Mao F, Yang W (2015) AgI/TiO2 nanocomposites: ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity. Ultrason Sonochem 22:1–6Google Scholar
  170. Yang J, Mei S, Ferreira J (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15:183–185Google Scholar
  171. Yang J, Mei S, Ferreira JM (2003) In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal technique. J Colloid Interface Sci 260:82–88Google Scholar
  172. Yang J, Mei S, Ferreira JM (2004a) Hydrothermal processing of nanocrystalline anatase films from tetraethylammonium hydroxide peptized titania sols. J Eur Ceram Soc 24:335–339Google Scholar
  173. Yang J, Mei S, Ferreira JMF (2004b) Hydrothermal fabrication of rod-like rutile nano-particles. Mater Sci Forum Trans Tech Publ 455-456:556–559Google Scholar
  174. Yeung K, Lam Y (1983) A simple chemical vapour deposition method for depositing thin TiO2 films. Thin Solid Films 109:169–178Google Scholar
  175. Žabová H, Sobek J, Církva V, Šolcová O, Kment Š, Hájek M (2009) Efficient preparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique. J Solid State Chem 182:3387–3392Google Scholar
  176. Zhang H, Banfield JF (2014) Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem Rev 114:9613–9644Google Scholar
  177. Zhang Q, Gao L (2003) Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2. Langmuir 19:967–971Google Scholar
  178. Zhang Z, Yates JT Jr (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551Google Scholar
  179. Zhang Y, Li G, Jin Y, Zhang Y, Zhang J, Zhang L (2002) Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem Phys Lett 365:300–304Google Scholar
  180. Zhang H, Zhu H, Sun R (2012) Fabrication of photocatalytic TiO2 nanoparticle film on PET fabric by hydrothermal method. Text Res J 82:747–754Google Scholar
  181. Zheng Y, Lv K, Wang Z, Deng K, Li M (2012) Microwave-assisted rapid synthesis of anatase TiO2 nanocrystals with exposed {0 0 1} facets. J Mol Catal A Chem 356:137–143Google Scholar
  182. Zhou M, Yu J, Cheng B, Yu H (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys 93:159–163Google Scholar
  183. Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Funct Mater 21:1922–1930Google Scholar
  184. Z-l L, Lindner E, Mayer HA (2002) Applications of sol–gel-processed interphase catalysts. Chem Rev 102:3543–3578Google Scholar
  185. Znaidi L, Seraphimova R, Bocquet J, Colbeau-Justin C, Pommier C (2001) A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts. Mater Res Bull 36:811–825Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Material EngineeringTechnical University of LiberecLiberecCzech Republic
  2. 2.Department of Fibre and Textile TechnologyUniversity of AgricultureFaisalabadPakistan

Personalised recommendations