Advertisement

Environmental efficiency of Saccharomyces cerevisiae on methane production in dairy and beef cattle via a meta-analysis

  • Babak Darabighane
  • Abdelfattah Zeidan Mohamed Salem
  • Farzad Mirzaei Aghjehgheshlagh
  • Ali Mahdavi
  • Abolfazl Zarei
  • Mona Mohamed Mohamed Yasseen Elghandour
  • Secundino López
Research Article
  • 13 Downloads

Abstract

The objective of the present study is to examine the effect of yeast (Saccharomyces cerevisiae) on reduction of methane (CH4) production in dairy and beef cattle using meta-analytic methods. After compilation of relevant scientific publications available from the literature between 1990 and 2016, and applying exclusion and inclusion criteria, meta-analyses of data from dairy and beef cattle were applied for the pooled dataset or for each animal category (dairy or beef). The results of meta-analysis of all three datasets (all cattle, dairy cattle, or beef cattle) suggested that effect size of yeast either on daily CH4 production or on CH4 production per dry matter intake (CH4/DMI) was not significant. The results of Q test and I2 statistic suggest that there is no heterogeneity between different studies on CH4 production and CH4/DMI. The results of meta-analysis suggest that use of yeast (Saccharomyces cerevisiae) as feed additive does not offer significant results in terms of reduction of CH4 production in dairy and beef cattle. Further research on the effects of different doses of yeast, use of yeast products, different strains, and experimental designs is warranted to elucidate the effects of yeasts on methane production in the rumen.

Keywords

Yeast Meta-analysis Methane Dairy cow Beef cattle 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bayat A, Kairenius P, Stefański T, Leskinen H, Comtet-Marre S, Forano E, Chaucheyras-Durand F, Shingfield K (2015) Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J Dairy Sci 98:3166–3181CrossRefGoogle Scholar
  2. Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335CrossRefGoogle Scholar
  3. Borenstein M, Hedges LV, Higgins J, Rothstein HR (2009) Introduction to meta-analysis. In: John Wiley & Sons Ltd. United Kingdom, ChichesterGoogle Scholar
  4. Chaucheyras-Durand F, Masséglia S, Fonty G, Forano E (2010) Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Appl Environ Microbiol 76:7931–7937CrossRefGoogle Scholar
  5. Chaucheyras-Durand F, Chevaux E, Martin C, Forano E (2012) Use of yeast probiotics in ruminants: effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In: Rigobelo EC (ed) Probiotic in animals. IntechOpen,  https://doi.org/10.5772/50192. Available from: https://www.intechopen.com/books/probiotic-in-animals/use-of-yeast-probiotics-in-ruminants-effects-and-mechanisms-of-action-on-rumen-ph-fibre-degradation-.
  6. Chung Y-H, Walker N, McGinn S, Beauchemin K (2011) Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. J Dairy Sci 94:2431–2439CrossRefGoogle Scholar
  7. Desnoyers M, Giger-Reverdin S, Bertin G, Duvaux-Ponter C, Sauvant D (2009) Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J Dairy Sci 92:1620–1632CrossRefGoogle Scholar
  8. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463CrossRefGoogle Scholar
  9. Elghandour M, Vázquez J, Salem A, Kholif A, Cipriano M, Camacho L, Márquez O (2017) In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J Appl Anim Res 45:389–395CrossRefGoogle Scholar
  10. Hernández A, Kholif AE, Elghandour MM, Camacho LM, Cipriano MM, Salem AZ, Cruz H, Ugbogu EA (2017) Effectiveness of xylanase and Saccharomyces cerevisiae as feed additives on gas emissions from agricultural calf farms. J Clean Prod 148:616–623CrossRefGoogle Scholar
  11. Higgins J, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefGoogle Scholar
  12. Hristov A, Varga G, Cassidy T, Long M, Heyler K, Karnati S, Corl B, Hovde C, Yoon I (2010) Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J Dairy Sci 93:682–692CrossRefGoogle Scholar
  13. Hristov A, Oh J, Firkins J, Dijkstra J, Kebreab E, Waghorn G, Makkar H, Adesogan A, Yang W, Lee C (2013) Special topics—mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 91:5045–5069CrossRefGoogle Scholar
  14. Iqbal MF, Cheng Y-F, Zhu W-Y, Zeshan B (2008) Mitigation of ruminant methane production: current strategies, constraints and future options. World J Microbiol Biotechnol 24:2747–2755CrossRefGoogle Scholar
  15. Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492CrossRefGoogle Scholar
  16. Kataria RP (2015) Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiol Res 6:19–25Google Scholar
  17. Lean I, Rabiee A, Duffield T, Dohoo I (2009) Invited review: use of meta-analysis in animal health and reproduction: methods and applications. J Dairy Sci 92:3545–3565CrossRefGoogle Scholar
  18. Lu Q, Wu J, Wang M, Zhou C, Han X, Odongo EN, Tan Z, Tang S (2016) Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats. Arch Anim Nutr 70:224–238CrossRefGoogle Scholar
  19. McGinn S, Beauchemin K, Coates T, Colombatto D (2004) Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci 82:3346–3356CrossRefGoogle Scholar
  20. Meller RA (2016) Potential roles of nitrate and live yeast culture to suppress methane emission and their influence on ruminal fermentation, digestibility, and milk production in Jersey cows. The Ohio State University, MSc dissertationGoogle Scholar
  21. Moss AR, Jouany JP, Newbold CJ (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253CrossRefGoogle Scholar
  22. Muñoz C, Wills DA, Yan T (2016) Effects of dietary active dried yeast (Saccharomyces cerevisiae) supply at two levels of concentrate on energy and nitrogen utilisation and methane emissions of lactating dairy cows. Anim Prod Sci 57:656–664CrossRefGoogle Scholar
  23. Mutsvangwa T, Edwards I, Topps J, Paterson G (1992) The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim Prod 55:35–40CrossRefGoogle Scholar
  24. Mwenya B, Santoso B, Sar C, Gamo Y, Kobayashi T, Arai I, Takahashi J (2004) Effects of including β1–4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim Feed Sci Technol 115:313–326CrossRefGoogle Scholar
  25. Poppy G, Rabiee A, Lean I, Sanchez W, Dorton K, Morley P (2012) A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J Dairy Sci 95:6027–6041CrossRefGoogle Scholar
  26. Possenti RA, Franzolin R, Schammas EA, Demarchi JJAA, Frighetto RTS, MAd L (2008) Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Rev Bras Zootec 37:1509–1516CrossRefGoogle Scholar
  27. Sartori ED, Canozzi MEA, Zago D, Prates ÊR, Velho JP, Barcellos JOJ (2017) The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. J Agric Sci 9:21–37  https://doi.org/10.5539/jas.v9n4p21 Google Scholar
  28. Shibata M, Terada F (2010) Factors affecting methane production and mitigation in ruminants. Anim Sci J 81:2–10CrossRefGoogle Scholar
  29. Sutton AJ, Higgins J (2008) Recent developments in meta-analysis. Stat Med 27:625–650CrossRefGoogle Scholar
  30. Valentine JC, Pigott TD, Rothstein HR (2010) How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat 35:215–247CrossRefGoogle Scholar
  31. Vohra A, Syal P, Madan A (2016) Probiotic yeasts in livestock sector. Anim Feed Sci Technol 219:31–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Babak Darabighane
    • 1
  • Abdelfattah Zeidan Mohamed Salem
    • 2
  • Farzad Mirzaei Aghjehgheshlagh
    • 1
  • Ali Mahdavi
    • 3
  • Abolfazl Zarei
    • 4
  • Mona Mohamed Mohamed Yasseen Elghandour
    • 2
  • Secundino López
    • 5
  1. 1.Department of Animal ScienceUniversity of Mohaghegh ArdabiliArdabilIran
  2. 2.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma del Estado de MéxicoTlalpanMéxico
  3. 3.Faculty of Veterinary MedicineSemnan UniversitySemnanIran
  4. 4.Department of Animal ScienceIslamic Azad UniversityKarajIran
  5. 5.Instituto de Ganadería de Montaña (IGM) CSIC-Universidad de León, Departamento de Producción AnimalUniversidad de LeónLeónSpain

Personalised recommendations