Advertisement

Chromium (VI) remediation in aqueous solution by waste products (peel and seed) of mango (Mangifera indica L.) cultivars

  • Caroline De Goes Sampaio
  • Juliana Gaspar Alan E Silva
  • Edy Sousa De Brito
  • Helena Becker
  • Maria Teresa Salles Trevisan
  • Robert W. OwenEmail author
Research Article
  • 43 Downloads

Abstract

The surface group characteristics of mango cultivar peels and seeds were evaluated by infrared spectra, PZC, and functional group composition. The adsorption/reduction of chromium (VI) in aqueous solutions was investigated by varying pH, contact time, initial Cr(VI) concentration, and adsorbent amount. The results show that both peel and seed powders of the mango cultivars showed significant adsorption/reduction capacity for Cr(VI) and that the desorption process obeys pseudo-second-order kinetics. Optimal adsorption occurred at pH 1.0, using a Cr(VI) concentration of 100 mg/L. On average, at pH 1.0, and a concentration of 3 g/L, the maximum adsorption/reduction capacity of Cr(VI) was 83% (peels 76%, seeds 90%). Of the mango powders tested, the most efficient were Tommy seed (100%) and Coite peel (98%) followed by Coite seed (96%) and Tommy peel powders (95%). The adsorption/reduction of Cr(VI) was complete (100%) by the mango seed, in comparison to the peel powders (97%) after 180 min. The data indicates that mango waste products, such as seed and peel powders, are both excellent candidates for the remediation of Cr(VI) from aqueous systems and due to the higher concentration of gallates and galloyl glucosides, the mango seed powders should be the powders of choice for future remediation projects.

Keywords

Adsorbent Gallate glucosides Mango powders Peels pH Seeds 

Abbreviations

MCP

Mango Coité peels

MCS

Mango Coité seeds

MMP

Mango Mallika peels

MMS

Mango Mallika seeds

MRP

Mango Rosa peels

MRS

Mango Rosa seeds

MTP

Mango Tommy peels

MTS

Mango Tommy seeds

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alves RE, Brito ES, Rufino MSM, Sampaio CG (2008) Antioxidant activity measurement in tropical fruits: a case study with acerola. Acta Hortic 773:299–305CrossRefGoogle Scholar
  2. APHA (2005) Standard methods for the examination of water and waste water, 20th edn. American Public Health Association (APHA), BaltimoreGoogle Scholar
  3. Aygün A, Yenisoy-Karakas S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66:189–195CrossRefGoogle Scholar
  4. Barreto JC, Trevisan MTS, Hull WE, Erben G, Brito ES, Pfundstein B, Würtele G, Spiegelhalder B, Owen RW (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L). J Agric Food Chem 56:5599–5610CrossRefGoogle Scholar
  5. Bonoli M, Verardo V, Marconi E, Caboni MF (2004) Antioxidant phenols in barley (Hordeum vulgare L) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J Agric Food Chem 52:5195–5200CrossRefGoogle Scholar
  6. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30Google Scholar
  7. Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K (2009) Grape waste as a biosorbent for removing Cr(VI) from aqueous solution. J Hazard Mater 163:245–250CrossRefGoogle Scholar
  8. Deveci H, Kar Y (2013) Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. J Ind Eng Chem 19:190–196CrossRefGoogle Scholar
  9. Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291CrossRefGoogle Scholar
  10. Dittert IM, Brandão HL, Pina F, Silva EAB, Souza SMAGU, Souza AAU, Botelho CMS, Boaventura RAR, Vilar VJP (2014) Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chem Eng J 237:443–454CrossRefGoogle Scholar
  11. Fernando SEL, Bianca Y, Sergio P, Eapen SD, Sebastian PJ (2014) Evaluation of agro-industrial wastes to produce bioethanol: case study - mango (Mangifera Indica L). Energy Procedia 57:860–866CrossRefGoogle Scholar
  12. Ferreira FR, Valentim IB, Ramones ELC, Trevisan MTS, Olea-Azar C, Perez-Cruz F, Abreu CF, Goulart MOF (2013) Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin. LWT-Food Sci Technol 51:129–134CrossRefGoogle Scholar
  13. Gerić M, Gajski G, Oreščanin V, Kollar R, Franekić J, Garaj-Vrhovac V (2015) Toxicological assessment and management options for boat pressure-washing waste water. Ecotoxicol Environ Saf 114:164–170CrossRefGoogle Scholar
  14. Gong X, Li W, Wang K, Hu J (2013) Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid. Bioresour Technol 141:145–151CrossRefGoogle Scholar
  15. Guilarduci VVS, Mesquita JP, Martelli PB, Gorgulho HF (2006) Adsorção de fenol sobre carvão ativado em meio alcalino. Quim Nova 29:1226–1232CrossRefGoogle Scholar
  16. Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Trans I Chem E 76:183–191Google Scholar
  17. Ho YS, Mckay G, Wase DAJ, Foster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650CrossRefGoogle Scholar
  18. Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164:161–171CrossRefGoogle Scholar
  19. Jung C, Heo J, Han J, Her N, Lee S, Oh J, Ryu J, Yoon Y (2013) Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol 106:63–71CrossRefGoogle Scholar
  20. Kaya K, Pehlivan E, Schmidt C, Bahadir M (2014) Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions. Food Chem 158:112–117CrossRefGoogle Scholar
  21. Khosravi R, Fazlzadehdavil M, Barikbin B, Taghizadeh A (2014) Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum harmala. Appl Surf Sc 292:670–677CrossRefGoogle Scholar
  22. Kim H, Moon JY, Kim H, Lee DS, Cho M, Choi HK, Kim YS, Mosaddik A, Cho SK (2010) Antioxidant and antiproliferative activities of mango (Mangifera indica L) flesh and peel. Food Chem 121:429–436CrossRefGoogle Scholar
  23. Kumar R, Bishnoi NR, Bishnoi K (2008) Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208CrossRefGoogle Scholar
  24. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungl Svenska Vetenskapsakad Handl 24:1–39Google Scholar
  25. Levankumar L, Muthukumaran V, Gobinath MB (2009) Batch adsorption and kinetics of chromium (VI) removal from aqueous solutions by Ocimum americanum L seed pods. J Hazard Mater 161:709–713CrossRefGoogle Scholar
  26. Marandi R (2011) Biosorption of hexavalent chromium from aqueous solution by dead fungal biomass of Phanerochaete crysosporium: bath and fixed bed studies. Canad J Chem Eng Technol 2:8–22Google Scholar
  27. Mimura AMS, Vieira TVA, Martelli PB, Gorgulho HF (2010) Aplicação da casca de arroz na adsorção dos íons Cu2+, Al3+, Ni2+ e Zn2+. Quim Nova 33:1279–1284CrossRefGoogle Scholar
  28. Mirabella N, Castellani V, Sala S (2014) Current options for the valorization of food manufacturing waste: a review. J Clean Prod 65:28–41CrossRefGoogle Scholar
  29. Miretzky P, Cirelli AF (2010) Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180:1–19CrossRefGoogle Scholar
  30. Nadeem R, Naqvi MA, Nasir MH, Saeed R, Iqbal T, Ashraf M, Ansari TM (2015) Efficacy of physically preheated Mangifera indica biomass for Cu2+ and Zn2+ sequestration. J Saudi. Chem Soc 19:23–35Google Scholar
  31. Netzahuatl-Munõz AR, Guillén-Jiménez FM, Chávez-Gómez B, Villegas-Garrido TL, Cristiani-Urbina E (2012) Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water Air Soil Pollut 223:625–641CrossRefGoogle Scholar
  32. Oliveira LS, Franca AS, Alves TM, Rocha SDF (2008) Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J Hazard Mater 155:507–512CrossRefGoogle Scholar
  33. Pagnanelli F, Mainelli S, Veglio F, Toro L (2003) Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modelling. Chem Eng Sci 58:4709–4717CrossRefGoogle Scholar
  34. Panda L, Das B, Rao DS, Mishra BK (2011) Application of dolochar in the removal of cadmium and hexavalent chromium ions from aqueous solutions. J Hazard Mater 192:822–831CrossRefGoogle Scholar
  35. Park D, Yun YS, Ahn CK, Park JM (2007) Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 66:939–946CrossRefGoogle Scholar
  36. Poonkuzhali K, Rajeswari V, Saravanakumar T, Viswanathamurthi P, Park SM, Govarthanan M, Sathishkumar P, Palvannan T (2014) Reduction of hexavalent chromium using Aervalanata L: elucidation of reduction mechanism and identification of active principles. J Hazard Mater 272:89–95CrossRefGoogle Scholar
  37. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  38. Redwood MD, Orozco RL, Majewski AJ, Macaskie LE (2012) An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresour Technol 119:384–392CrossRefGoogle Scholar
  39. Ribeiro SMR, Barbosa LCA, Queiroz JH, Knödler M, Schieber A (2008) Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L) varieties. Food Chem 110:620–626CrossRefGoogle Scholar
  40. Sampaio CG, Freitas FA, Souza FTS, Brito ES, Becker H, Trevisan MTS (2015a) Characterization and use of Noni (Morinda citrifolia L) seeds for the removal of hexavalent chromium ions from aqueous solutions. Int J Civ Environ Eng 15:21–31Google Scholar
  41. Sampaio CG, Frota LS, Magalhães HS, Dutra LMU, Queiroz DC, Araújo RS, Becker H, Souza JRR, Ricardo NMPS, Trevisan MTS (2015b) Chitosan/mangiferin particles for Cr(VI) reduction and removal. Int J Biol Macromol 78:273–279CrossRefGoogle Scholar
  42. Soudek P, Petrova S, Vankova R, Song J, Vanek T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24CrossRefGoogle Scholar
  43. Suksabye P, Thiravetyan P, Nakbanpote W, Chayabutra S (2007) Chromium removal from electroplating wastewater by coir pith. J Hazard Mater 141:637–644CrossRefGoogle Scholar
  44. Valdés H, Sánchez-Polo M, Rivera-Utrilla J, Zaror CA (2002) Effect of ozone treatment on surface properties of activated carbon. Langmuir 18:2111–2116CrossRefGoogle Scholar
  45. Wei S, Li D, Huang Z, Huang Y, Wang F (2013) High-capacity adsorption of Cr(VI) from aqueous solution using a hierarchical porous carbon obtained from pig bone. Bioresour Technol 134:407–411CrossRefGoogle Scholar
  46. Zhang H, Tang Y, Cai D, Liu X, Wang X, Huang Q, Yu Z (2010) Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: equilibrium and kinetic studies. J Hazard Mater 181:801–808CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Caroline De Goes Sampaio
    • 1
    • 2
  • Juliana Gaspar Alan E Silva
    • 1
  • Edy Sousa De Brito
    • 3
  • Helena Becker
    • 4
  • Maria Teresa Salles Trevisan
    • 1
  • Robert W. Owen
    • 5
    • 6
    Email author return OK on get
  1. 1.Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Instituto Federal de Educação, Ciência e Tecnologia do CearáMaracanaúBrazil
  3. 3.Embrapa Agroindústria TropicalFortalezaBrazil
  4. 4.Departamento de Química Analitica e Fisico-QuimicaUniversidade Federal do CearáFortalezaBrazil
  5. 5.Division of Preventive OncologyNational Center for Tumor DiseasesHeidelbergGermany
  6. 6.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations