Advertisement

Effects of reaction conditions on light-dependent silver nanoparticle biosynthesis mediated by cell extract of green alga Neochloris oleoabundans

  • Zeqing Bao
  • Jiahui Cao
  • Guangbo Kang
  • Christopher Q. Lan
Research Article
  • 51 Downloads

Abstract

Silver nanoparticles (AgNPs) were synthesized by incubating the mixture of AgNO3 solution and whole-cell aqueous extracts (WCAEs) of Neochloris oleoabundans under light conditions. By conducting single-factor and multi-factor optimization, the effects of parameters including AgNO3 concentration, pH, and extraction time were quantitatively evaluated. The optimal conditions in terms of AgNP yield were found to be 0.8 mM AgNO3, pH 5, and 9-h extraction. The AgNPs thus synthesized were quasi-spherical with a mean particle diameter of 16.63 nm and exhibited decent uniformity as well as antibacterial activities, which may facilitate AgNP biosynthesis’s application in the near future.

Keywords

Biosynthesis Silver nanoparticles Microalgae AgNO3 concentration pH Extraction time Light-dependent reaction 

Notes

Acknowledgments

This research was funded by a Discovery Grant (RGPIN – 1511) to Dr. Christopher Q. Lan by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

  1. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983.  https://doi.org/10.1039/C3RA44507K CrossRefGoogle Scholar
  2. Bao Z, Lan CQ (2018) Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans. Colloids Surf B Biointerfaces 170:251–257.  https://doi.org/10.1016/j.colsurfb.2018.06.001 CrossRefGoogle Scholar
  3. Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56.  https://doi.org/10.1186/1477-3155-9-56 CrossRefGoogle Scholar
  4. Baset S, Akbari H, Zeynali H, Shafie M (2011) Size measurement of metal and semiconductor nanoparticles via UV-Vis absorption spectra. Dig J Nanomater Biostruct DJNB 6Google Scholar
  5. Bhatte KD, Tambade PJ, Dhake KP, Bhanage BM (2010) Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones. Catal Commun 11:1233–1237.  https://doi.org/10.1016/j.catcom.2010.06.011 CrossRefGoogle Scholar
  6. Castro L, Blázquez ML, Muñoz JA et al (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7:109–116.  https://doi.org/10.1049/iet-nbt.2012.0041 CrossRefGoogle Scholar
  7. Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074.  https://doi.org/10.1016/j.watres.2008.02.021 CrossRefGoogle Scholar
  8. Du ZC, Yang JG, Yao ZQ, Xue BY (2002) Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center. J Mater Process Technol 129:619–623.  https://doi.org/10.1016/S0924-0136(02)00668-4 CrossRefGoogle Scholar
  9. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109.  https://doi.org/10.1016/j.nano.2009.04.006 CrossRefGoogle Scholar
  10. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8:37–45.  https://doi.org/10.1016/j.nano.2011.05.007 CrossRefGoogle Scholar
  11. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275.  https://doi.org/10.1016/j.jrras.2015.01.007 CrossRefGoogle Scholar
  12. Jena J, Pradhan N, Dash BP et al (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct 3:1–8Google Scholar
  13. Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19:661–666.  https://doi.org/10.1016/j.jscs.2014.06.005 CrossRefGoogle Scholar
  14. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101.  https://doi.org/10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  15. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56.  https://doi.org/10.1016/j.colsurfb.2009.10.008 CrossRefGoogle Scholar
  16. Li W-R, Xie X-B, Shi Q-S, Zeng HY, OU-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122.  https://doi.org/10.1007/s00253-009-2159-5 CrossRefGoogle Scholar
  17. Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran 19:926–929.  https://doi.org/10.1016/j.scient.2012.01.010 CrossRefGoogle Scholar
  18. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759.  https://doi.org/10.1063/1.1462610 CrossRefGoogle Scholar
  19. Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515.  https://doi.org/10.1016/S0734-9750(02)00050-2 CrossRefGoogle Scholar
  20. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169:59–79.  https://doi.org/10.1016/j.cis.2011.08.004 CrossRefGoogle Scholar
  21. Peng L, Lan CQ, Zhang Z, Sarch C, Laporte M (2015) Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: effects of pH and dissolved inorganic carbon. Bioresour Technol 197:143–151.  https://doi.org/10.1016/j.biortech.2015.07.101 CrossRefGoogle Scholar
  22. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta BBA - Bioenerg 975:384–394.  https://doi.org/10.1016/S0005-2728(89)80347-0 CrossRefGoogle Scholar
  23. Quester K, Avalos-Borja M, Castro-Longoria E (2013) Biosynthesis and microscopic study of metallic nanoparticles. Micron 54–55:1–27.  https://doi.org/10.1016/j.micron.2013.07.003 CrossRefGoogle Scholar
  24. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83.  https://doi.org/10.1016/j.biotechadv.2008.09.002 CrossRefGoogle Scholar
  25. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373.  https://doi.org/10.1016/j.indcrop.2015.03.015 CrossRefGoogle Scholar
  26. Ramya M, Subapriya MS (2012) Green synthesis of silver nanoparticles. Int J Pharm Med Biol Sci 1:54–61Google Scholar
  27. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716.  https://doi.org/10.1016/j.actbio.2007.11.006 CrossRefGoogle Scholar
  28. Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K et al (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57:71–75.  https://doi.org/10.1042/BA20100196 CrossRefGoogle Scholar
  29. Sharma A, Sharma S, Sharma K, Chetri SPK, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawal V (2016) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28:1759–1774.  https://doi.org/10.1007/s10811-015-0715-1 CrossRefGoogle Scholar
  30. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38.  https://doi.org/10.1016/j.biombioe.2012.12.019 CrossRefGoogle Scholar
  31. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65.  https://doi.org/10.1186/s12951-017-0308-z CrossRefGoogle Scholar
  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85.  https://doi.org/10.1016/0003-2697(85)90442-7 CrossRefGoogle Scholar
  33. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182.  https://doi.org/10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  34. Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 52:393–399Google Scholar
  35. Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19:5765–5772.  https://doi.org/10.1021/cm071758l CrossRefGoogle Scholar
  36. Thuc DT, Huy TQ, Hoang LH, Tien BC, van Chung P, Thuy NT, le AT (2016) Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Mater Lett 181:173–177.  https://doi.org/10.1016/j.matlet.2016.06.008 CrossRefGoogle Scholar
  37. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646.  https://doi.org/10.1016/S1466-6049(01)00197-0 CrossRefGoogle Scholar
  38. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489.  https://doi.org/10.1007/s11051-006-9150-1 CrossRefGoogle Scholar
  39. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302.  https://doi.org/10.1016/j.watres.2013.05.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zeqing Bao
    • 1
  • Jiahui Cao
    • 1
  • Guangbo Kang
    • 1
  • Christopher Q. Lan
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations