Advertisement

Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils

  • Idalina Bragança
  • Paulo C. Lemos
  • Cristina Delerue-Matos
  • Valentina F. Domingues
Research Article
  • 25 Downloads

Abstract

3-Phenoxybenzoic acid (3-PBA) is a shared metabolite of several synthetic pyrethroid pesticides (SPs) resulting from environmental degradation of parent compounds and thus occurs frequently as a residue in samples. Hence, the importance of 3-PBA evaluation after pyrethroid application. There is a gap of analytical methods to determine 3-PBA in soil samples. Therefore, an analytical method that combines the solid-phase extraction (SPE) and gas chromatography–mass spectrometry (GC/MS) detection has been developed for the determination of 3-PBA in soil samples. The analytical method was validated in terms of linearity, sensitivity, intra- and inter-day batch precisions, recoveries, and quantification limits. An SPE method using a Strata X cartridge allows obtaining limits of detection and quantification equal to 4.0 and 13.3 ng g−1, respectively. Under optimized conditions, the method average recovery levels ranged from 70.3 to 93.5% with a relative standard deviation below 3.4%. Method intra- and inter-day precision was under 5.0 and 4.8%, respectively. The developed method was applied to 11 agricultural soil samples in the north of Portugal. The developed methodology allowed for the determination of the pyrethroid metabolite, 3-PBA, in agricultural soil samples at levels of few ng g−1.

Graphical abstract

Keywords

3-phenoxybenzoic acid Solid-phase extraction Soils Gas chromatography/mass spectrometry 

Notes

Acknowledgments

The authors are greatly indebted to all financing sources.

Funding information

I. Bragança is financially supported by FCT through the doctoral research grant financed by fellowship (SFRH/BD/52504/2014). This work was supported by the Associate Laboratory for Green Chemistry-LAQV which is financed by national funds from FCT/MCTES (UID/QUI/50006/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007265).

References

  1. Ahn KC, Gee SJ, Kim HJ, Aronov PA, Vega H, Krieger RI, Hammock BD (2011) Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal Bioanal Chem 401:1285–1293.  https://doi.org/10.1007/s00216-011-5184-z CrossRefGoogle Scholar
  2. Albaiges J (2016) High performance liquid chromatography in pesticide residue analysis. Int J Environ Anal Chem 96:1507–1508.  https://doi.org/10.1080/03067319.2016.1257708 CrossRefGoogle Scholar
  3. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706.  https://doi.org/10.1021/es051407c CrossRefGoogle Scholar
  4. Arrebola FJ, Martı́nez-Vidal JL, Fernández-Gutiérrez A, Akhtar MH (1999) Monitoring of pyrethroid metabolites in human urine using solid-phase extraction followed by gas chromatography-tandem mass spectrometry. Anal Chim Acta 401:45–54.  https://doi.org/10.1016/S0003-2670(99)00519-X CrossRefGoogle Scholar
  5. Aylward LL, Irwin K, St-Amand A, Nong A, Hays SM (2018) Screening-level biomonitoring equivalents for tiered interpretation of urinary 3-phenoxybenzoic acid (3-PBA) in a risk assessment context. Regul Toxicol Pharmacol 92:29–38.  https://doi.org/10.1016/j.yrtph.2017.11.002 CrossRefGoogle Scholar
  6. Braganca I, Placido A, Paiga P, Domingues VF, Delerue-Matos C (2012) QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci Total Environ 433:281–289.  https://doi.org/10.1016/j.scitotenv.2012.06.035 CrossRefGoogle Scholar
  7. Burns CJ, Pastoor TP (2018) Pyrethroid epidemiology: a quality-based review. Crit Rev Toxicol 48:297–311.  https://doi.org/10.1080/10408444.2017.1423463 CrossRefGoogle Scholar
  8. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011a) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483.  https://doi.org/10.1007/s00253-011-3136-3 CrossRefGoogle Scholar
  9. Chen S, Yang L, Hu M, Liu J (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767.  https://doi.org/10.1007/s00253-010-3035-z CrossRefGoogle Scholar
  10. Chen S, Hu W, Xiao Y, Deng Y, Jia J, Hu M (2012) Degradation of 3-phenoxybenzoic acid by a Bacillus sp. PLoS One 7:e50456.  https://doi.org/10.1371/journal.pone.0050456 CrossRefGoogle Scholar
  11. Chuang JC, Van Emon JM, Trejo RM, Durnford J (2011) Biological monitoring of 3-phenoxybenzoic acid in urine by an enzyme-linked immunosorbent assay. Talanta 83:1317–1323.  https://doi.org/10.1016/j.talanta.2010.07.077 CrossRefGoogle Scholar
  12. Columé A, Cárdenas S, Gallego M, Valcárcel M (2001) A solid phase extraction method for the screening and determination of pyrethroid metabolites and organochlorine pesticides in human urine. Rapid Commun Mass Spectrom 15:2007–2013.  https://doi.org/10.1002/rcm.471 CrossRefGoogle Scholar
  13. Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116.  https://doi.org/10.1016/j.envint.2014.11.007 CrossRefGoogle Scholar
  14. Correia-Sa L, Fernandes VC, Carvalho M, Calhau C, Domingues VF, Delerue-Matos C (2012) Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J Sep Sci 35:1521–1530.  https://doi.org/10.1002/jssc.201200087 CrossRefGoogle Scholar
  15. Domingues VF, Priolo G, Alves AC, Cabral MF, Delerue-Matos C (2007) Adsorption behavior of α -cypermethrin on cork and activated carbon. J Environ Sci Health B 42:649–654.  https://doi.org/10.1080/03601230701465635 CrossRefGoogle Scholar
  16. Domingues VF, Nasuti C, Piangerelli M, Correia-Sá L, Ghezzo A, Marini M, Abruzzo P, Visconti P, Giustozzi M, Rossi G, Gabbianelli R (2016) Pyrethroid pesticide metabolite in urine and microelements in hair of children affected by autism Spectrum disorders: a preliminary investigation. Int J Environ Res Public Health 13:388CrossRefGoogle Scholar
  17. European c (2010) Guidance document on pesticide residue analytical methods vol SANCO/825/00 rev. 8.1. European Commision - Directorate General Health and Consumer ProtectionGoogle Scholar
  18. European c (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed vol SANCO/12571/2013. European commission - health & consumer protection directorate-general,Google Scholar
  19. Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R (2017) In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 340:411–423.  https://doi.org/10.1016/j.neuroscience.2016.10.071 CrossRefGoogle Scholar
  20. Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162.  https://doi.org/10.1016/j.jhydrol.2010.08.012 CrossRefGoogle Scholar
  21. Fernandez-Alvarez M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Cela R, Dagnac T (2008) Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction-gas chromatography. J Chromatogr A 1188:154–163.  https://doi.org/10.1016/j.chroma.2008.02.080 CrossRefGoogle Scholar
  22. Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359Google Scholar
  23. Hesse PR (ed) (1972) A textbook of soil chemical analysis. Chemical Publishing Co., Inc., New York.  https://doi.org/10.1017/S0014479700005202 CrossRefGoogle Scholar
  24. Jain RB (2016) Variability in the levels of 3-phenoxybenzoic acid by age, gender, and race/ethnicity for the period of 2001–2002 versus 2009–2010 and its association with thyroid function among general US population. Environ Sci Pollut Res 23:6934–6939.  https://doi.org/10.1007/s11356-015-5954-9 CrossRefGoogle Scholar
  25. Kaneko H (2010) Pyrethroid chemistry and metabolism. In: Krieger R (ed) Hayes' handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 1635–1663.  https://doi.org/10.1016/B978-0-12-374367-1.00076-8 CrossRefGoogle Scholar
  26. Kittusamy G, Kandaswamy C, Kandan N, Subramanian M (2014) Pesticide residues in two frog species in a paddy agroecosystem in Palakkad district, Kerala, India. Bull Environ Contam Toxicol 93:728–734.  https://doi.org/10.1007/s00128-014-1351-1 CrossRefGoogle Scholar
  27. Kumari B, Madan VK, Kathpal TS (2008) Status of insecticide contamination of soil and water in Haryana. India Environ Monit Assess 136:239–244.  https://doi.org/10.1007/s10661-007-9679-1 CrossRefGoogle Scholar
  28. Leng G, Berger-Preiss E, Levsen K, Ranft U, Sugiri D, Hadnagy W, Idel H (2005) Pyrethroids used indoor-ambient monitoring of pyrethroids following a pest control operation. Int J Hyg Environ Health 208:193–199CrossRefGoogle Scholar
  29. Li C, Chen L (2013) Determination of Pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis. Chromatographia 76:409–417.  https://doi.org/10.1007/s10337-013-2393-y CrossRefGoogle Scholar
  30. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel Pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420.  https://doi.org/10.1021/jf051460k CrossRefGoogle Scholar
  31. Luo YZ, Zhang MH (2011) Environmental modeling and exposure assessment of sediment-associated Pyrethroids in an agricultural watershed. PLoS One 6:1–10. e15794.  https://doi.org/10.1371/journal.pone.0015794 CrossRefGoogle Scholar
  32. Maloney SE, Maule A, Smith AR (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876Google Scholar
  33. Matveeva EG, Shan G, Kennedy IM, Gee SJ, Stoutamire DW, Hammock BD (2001) Homogeneous fluoroimmunoassay of a pyrethroid metabolite in urine. Anal Chim Acta 444:103–117.  https://doi.org/10.1016/S0003-2670(01)01161-8 CrossRefGoogle Scholar
  34. Meyer BN, Lam C, Moore S, Jones RL (2013) Laboratory degradation rates of 11 Pyrethroids under aerobic and anaerobic conditions. J Agric Food Chem 61:4702–4708.  https://doi.org/10.1021/jf400382u CrossRefGoogle Scholar
  35. Morgan MK (2012) Children's exposures to Pyrethroid insecticides at home: a review of data collected in published exposure measurement studies conducted in the United States. Int J Environ Res Public Health 9:2964–2985.  https://doi.org/10.3390/ijerph9082964 CrossRefGoogle Scholar
  36. Nelson DWaLES (1996) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of Soil Analysis, Part 2, 2nd ed. Agronomy 9 Edn. Am. Soc. of Agron., Inc. Madison, WI, pp 961–1010Google Scholar
  37. Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Chamy R, Rosenkranz F (eds) Biodegradation. IntechOpen.  https://doi.org/10.5772/52777. Available from: https://www.intechopen.com/books/biodegradation-life-of-science/pesticidebiodegradation-mechanisms-genetics-and-strategies-to-enhance-the-process
  38. Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen DF (ed) Insecticides. IntechOpen.  https://doi.org/10.5772/29495. Available from: https://www.intechopen.com/books/insecticides-advances-in-integratedpest-management/pyrethroid-insecticides-use-environmental-fate-and-ecotoxicology
  39. Pesticide Properties DataBase (n.d.) University of Hertfordshire. www.herts.ac.uk/aeru. Acessed 20 Sept 2018
  40. Regueiro J, Llompart M, Garcia-Jares C, Cela R (2007) Development of a high-throughput method for the determination of organochlorinated compounds, nitromusks and pyrethroid insecticides in indoor dust. J Chromatogr A 1174:112–124.  https://doi.org/10.1016/j.chroma.2007.08.052 CrossRefGoogle Scholar
  41. Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chromatogr A 1152:97–115.  https://doi.org/10.1016/j.chroma.2007.01.046 CrossRefGoogle Scholar
  42. Schettgen T, Dewes P, Kraus T (2016) A method for the simultaneous quantification of eight metabolites of synthetic pyrethroids in urine of the general population using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:5467–5478.  https://doi.org/10.1007/s00216-016-9645-2 CrossRefGoogle Scholar
  43. Shan GM, Huang HZ, Stoutamire DW, Gee SJ, Leng G, Hammock BD (2004) A sensitive class specific immunoassay for the detection of pyrethroid metabolites in human urine. Chem Res Toxicol 17:218–225.  https://doi.org/10.1021/tx034220c CrossRefGoogle Scholar
  44. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82.  https://doi.org/10.1007/s10532-007-9116-8 CrossRefGoogle Scholar
  45. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007.  https://doi.org/10.1016/j.chemosphere.2017.10.115 CrossRefGoogle Scholar
  46. Ueyama J, Saito I, Kamijima M (2010) Analysis and evaluation of pyrethroid exposure in human population based on biological monitoring of urinary pyrethroid metabolites. J Pestic Sci 35:87–98.  https://doi.org/10.1584/jpestics.R10-01 CrossRefGoogle Scholar
  47. Vera J, Correia-Sá L, Paíga P, Bragança I, Fernandes Virgínia C, Domingues Valentina F, Delerue-Matos C (2013) QuEChERS and soil analysis. An Overview Sample Preparation 1:54.  https://doi.org/10.2478/sampre-2013-0006
  48. Vidal JLM, Plaza-Bolanos P, Romero-Gonzalez R, Frenich AG (2009) Determination of pesticide transformation products: a review of extraction and detection methods. J Chromatogr A 1216:6767–6788.  https://doi.org/10.1016/j.chroma.2009.08.013 CrossRefGoogle Scholar
  49. White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216−+Google Scholar
  50. Xu C, Li X, Jin M, Sun X, Niu L, Lin C, Liu W (2018) Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. Environ Sci Pollut Res 25:12992–13003.  https://doi.org/10.1007/s11356-018-1542-0 CrossRefGoogle Scholar
  51. Yang XB, Ying GG, Kookana RS (2010) Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography-mass spectrometry. J Environ Sci Health Part B-Pestic Contam Agric Wastes 45:152–161.  https://doi.org/10.1080/03601230903472165 CrossRefGoogle Scholar
  52. Yao LX, Huang LX, Li GL, He ZH, Zhou CM, Yang BM, Guo B (2010) Pesticide residual status in litchi orchard soils in Guangdong, China. Huan Jing Ke Xue 31:2723–2726Google Scholar
  53. Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J, Liu W (2017) Relationships of Pyrethroid exposure with gonadotropin levels and pubertal development in Chinese boys. Environ Sci Technol 51:6379–6386.  https://doi.org/10.1021/acs.est.6b05984 CrossRefGoogle Scholar
  54. Yoshida T (2009) Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry. J Chromatogr A 1216:5069–5076.  https://doi.org/10.1016/j.chroma.2009.04.087 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.REQUIMTE/LAQV-GRAQInstituto Superior de Engenharia do Porto, Polytechnic PortoPortoPortugal
  2. 2.REQUIMTE/LAQV, Chemistry DepFCT/Universidade NOVA de LisboaCaparicaPortugal
  3. 3.RequimteInstituto Superior de Engenharia do Porto, Instituto Politécnico do PortoPortoPortugal

Personalised recommendations