Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 570–576 | Cite as

Sludge nematodes, cestodes, and trematodes eggs variation from lagooning, activated sludge and infiltration-percolation wastewater treatment system under semi-arid climate

  • Loubna El FelsEmail author
  • Bouchra El Hayany
  • Abdelouahed El Faiz
  • Mustapha Saadani
  • Mustapha Houari
  • Mohamed Hafidi
Research Article
  • 48 Downloads

Abstract

The prevalence and the identification of the helminth eggs load of raw sewage sludge was assessed of three different wastewater treatment systems. The results showed a variety of parasite species with following average concentrations; five taxa belonging to three classes nematodes, cestodes and trematodes were inventoried. The class of nematodes is the most diverse with 5 taxa. It is represented by the eggs of Ascaris sp., Capillaria sp., Trichuris sp., Toxocara sp., and Ankylostome sp., then comes the cestodes class, this is represented by the eggs of Tænia sp. The trematode class is represented by Schistosoma sp. The lagooning station of Chichaoua shows the highest load 7 species with Ascaris 21 eggs/g; Capillaria sp., 11 eggs/g; Trichuris sp., 6 eggs/g; Toxocara sp., 2 eggs/g and Ankylostome sp., 1 egg/g; Taenia sp., 2eggs/g; and Schistosoma sp., 1 egg/g. Infiltration-percolation sludge show the presence of 4 species of helminths eggs in sludge from anaerobic settling with different rates: 15 eggs/g for Ascaris sp., 15 eggs/g for Trichuris sp., 13 eggs/g for Capillaria sp., and 8 eggs/g for Taenia sp. However, in sand filter pool, the sludge helminth eggs load was decreased by 47% of Ascaris sp., 85% of Capillaria sp., and 75% of Taenia sp., Nevertheless, an increase of Trichuris eggs load was noted in the second sludge by 17%. Five helminth eggs was detected in primary sludge coming from decantation pools in activated sludge plant in Marrakech, that is Ascaris sp., with a load of 16 eggs/g; Capillaria sp., with 3 eggs/g, Trichuris eggs with 2 eggs/g; Taenia sp., with 4 eggs/g; and Schistosoma sp., with 2 eggs/g. The abatement load of Ascaris sp. with 81% and Schistosoma and Taenia sp., with 100% was noted in biological sludge. Nevertheless, an increase load of Capillaria and Trichuris eggs 81% and 75% respectively was observed in this sludge coming from biological pools. The distribution of parasitic helminth eggs is linked to the differences in demographic and socio-economic status, seasonal variation, physico-chemical characteristic of helminth eggs, and the purification wastewater system performance.

Keywords

Lagooning Activated sludge Infiltration-percolation Nematodes Cestodes Trematodes 

Notes

Acknowledgements

This work is part of project Research and Development « BOCOMPOSOL» supported by the Ministry of the Environment and under the coordination of Pr Mohamed Hafidi, Laboratory of ecology and environment of the Faculty of Sciences Semlalia of Marrakech, Morocco.

References

  1. Akpo Y, Sawadogo GJ, Degnon RG (2013) Évaluation de la contamination parasitologique des eaux usées domestiques collectées et traitées à la station d’épuration de Cambérène (Dakar). J Appl Biosci 69:5449–5455CrossRefGoogle Scholar
  2. Alouini Z, Achour H, Alouini A (1995) Becoming the Parasite Load of Wastewater Addressed in the ‘Cebala’ Irrigation Network. In: Zekri LA (ed) Agriculture and Sustainability Environment. CIHEAM, Zaragoza, pp 117–124Google Scholar
  3. Amahmid O, Asmama S, Bouhoum K (2002) Urban wastewater treatment in stabilization ponds: occurrence and removal of pathogens. Urban Water 4:255–262CrossRefGoogle Scholar
  4. Bouhoum K, Amahmid O, Asmama S (2002) Wastewater reuse for agricultural purposes: Effects on population and irrigated crops" Proceeding of international symposium environmental pollution control and waste management. EPCOWM. Tunis, Part II. P: 582–586Google Scholar
  5. Bowman DD, Little MD, Reimers RS (2003) Precision and accuracy of an assay for detecting Ascaris eggs in various biosolid matrices. Water Res 37(9):2063–2072CrossRefGoogle Scholar
  6. Bugg RJ, Robertson ID, Elliot AD, Thompson RCA (1999) Gastrointestinal parasites of urban dogs in Perth, Western Australia. Vet J 157:295–301CrossRefGoogle Scholar
  7. David ED, Lindquist WD (1982) Determination of the specific gravity of certain helminth eggs using sucrose density gradient centrifugation. J Parasitol 68(5):916–919CrossRefGoogle Scholar
  8. El Hayany B, El Glaoui GEM, Rihanni M, Ezzariai A, El Faiz A, El Gharous M, Hafidi M, El Fels L (2018) Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate. Environ Sci Pollut Res 25(11):10988–10996CrossRefGoogle Scholar
  9. Feachem RG, Bradley DJ, Garelick H, Mara DD (1983) Sanitation and disease health aspects of excreta and wastewater management. Wiley, ChichesterGoogle Scholar
  10. Firadi, R., 1991. Epuration et réutilisation des eaux usées à Ouarzazate : Abattement des œufs d’helminthes et contamination helminthique des cultures. Mémoire pour l’obtention du Certificat d’études approfondies (CEA) en science de l’eau. Université Cadi Ayyad. Faculté des sciences de MarrakechGoogle Scholar
  11. Gaspard PG, Schwartzbrod J (2003) Parasite contamination (helminth eggs) in sludge treatment plants: definition of a sampling strategy. Int J Hyg Environ Health 206:117–122Google Scholar
  12. Jiménez B (2007) Helminth ova control in sludge. A review. Water Sci Technol 56(9):147–155CrossRefGoogle Scholar
  13. Jimenez-Cisneros BE, Maya-Rendon C (2007) Helminths and sanitation. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex Research Centre, BadajozGoogle Scholar
  14. Keffala C, Harerimana C, Vasel JL (2012) OEufs d’helminthes dans les eaux usées et les boues de station d’épuration : enjeux sanitaires et intérêt du traitement par lagunage. Environn Risques et Santé 11:440–442Google Scholar
  15. Kelly JD (1975) Helminth parasites of dogs and cats prevalence in urban environments in Australia. Aust Vet Practit 5:133–141Google Scholar
  16. Khnifi A (1987) Thesis of the University Hassan II CasablancaGoogle Scholar
  17. Konaté Y, Maiga AH, Wethe J, Basset D, Casellas C, Picot B (2010) Sludge accumulation in anaerobic pond and viability of helminth eggs: a case study in Burkina Faso. Water Sci Technol 61:919–925CrossRefGoogle Scholar
  18. Konaté Y, Maiga AH, Basser D, Cassellas C, Picot B (2013) Parasite removal by waste stabilisation pond in Burkina Faso, accumulation and inactivation in sludge. Ecol Eng 50:101–106Google Scholar
  19. Koné D, Cofie O, Zurbrugg C, Gallizzi K, Moser D, Drescher S, Strauss M (2007) Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates. Water Res 41:4397–4402CrossRefGoogle Scholar
  20. Lakshminarayana JSS, Abdulappa MK (1969) The effect of sewage stabilization ponds on helminths. In: Sastry CA (ed) Low cost waste treatment. Nagpur, pp 290–299Google Scholar
  21. Maya C, Torner-Morales FJ, Lucario ES, Hernandez E, Jimenez B (2012) Viability of six species of larval and non-larval helminth eggs for different conditions of temperature, pH and dryness. Water Res 46:4770–4782Google Scholar
  22. Ouazzani N, Bouhoum K, Mandi L (1995) Wastewater treatment by stabilization pond: Marrakesh experiment. Water Sci Technol 31:75–80CrossRefGoogle Scholar
  23. Pecson BM, Nelson KL (2005) Inactivation of Ascaris suum eggs by ammonia. Environ Sci Technol 39:7909–7914CrossRefGoogle Scholar
  24. Reimers RS, Bowman DD, Schafer PL, Tata P, Leftwich B, Atique MM (2001) Factors affecting lagoon storage disinfection of biosolids. WEF/AWWA/CWEA Joint Residual and Biosolids Management Conference BiosolidsGoogle Scholar
  25. Salama Y, Chennaoui M, Mountadar M, Rihani M, Assobhei O (2013) The physicochemical and bacteriological quality and environmental risks of raw sewage rejected in the coast of the city of el Jadida (Morocco). Carpath J Earth Environ Sci 8(2):39–48Google Scholar
  26. Schwartzbrod J (2003) Quantification and Viability Determination for Helminth Eggs in Sludge (Modified EPA Method 1999), University of NancyGoogle Scholar
  27. Schwartzbrod J, Banas S (2003) Parasite contamination of liquid sludge from urban wastewater treatment plants. Water Sci Technol 47(3):163–166CrossRefGoogle Scholar
  28. Sengupta ME, Thamsborg SM, Andersen TJ, Olsen A, Dalsgaard A (2011) Sedimentation of helminth eggs in water. Water Res 45:4651–4660Google Scholar
  29. Sengupta ME, Keraita B, Olsen A, Boateng OK, Thamsborg SM, Palsdottir GR, Dalsgaard A (2012) Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water. Water Res 46:3646–3656CrossRefGoogle Scholar
  30. Shuval HI (1977) Health considerations in water renovation and reuse. In: Water renovation and reuse. Academic Press, New York, pp 33–72CrossRefGoogle Scholar
  31. Stien, J.L., 1989. Oeufs d'helminthes et environnement : le modele oeufs d'ascari. Thèse de doctorat de I'université de Metz Mention « Chimie et Microbiologie de I'EauGoogle Scholar
  32. Stien JL, Schwartzbrod J (1988) Viability determination of ascaris eggs recovered from wastewater. Environ Technol 9(5):401–406CrossRefGoogle Scholar
  33. Sylla I, Belghyti D (2008) Analyse parasitologique des eaux usées brutes de la ville de Sidi Yahia du Gharb (Maroc). World Journal of Biological Research, 1994-5108Google Scholar
  34. Thevenot MT, Larbaigt G, Collomb J, Bernard C, Schwartzbrod J (1985) Recovery of helminth eggs in compost in the course of composting in: inactivation of microorganisms in sewage sludge by stabilisation processes. Elsevier Science Publishing Co., New YorkGoogle Scholar
  35. US EPA Protocol (1999) Control of pathogens and vector attraction in sewage sludge, US EPA’s Pathogen Equivalency Committee (PEC), USEPA Environmental Regulations and Technology, Office of Research and Development EP A/625/R-92/013, Washington, DC, p 177Google Scholar
  36. Wharton DA (1983) The production and functional morphology of helminth egg shells. Parasitology 86:85–97CrossRefGoogle Scholar
  37. WHO (1989) The use of wastewater in agriculture and aquaculture: Health guidelines. Report of an expert group of WHO. Technical Report Series, GenèveGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Loubna El Fels
    • 1
    • 2
    Email author
  • Bouchra El Hayany
    • 1
  • Abdelouahed El Faiz
    • 1
  • Mustapha Saadani
    • 3
  • Mustapha Houari
    • 4
  • Mohamed Hafidi
    • 1
    • 5
  1. 1.Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences SemlaliaUniversité Cadi Ayyad MarrakechMarrakechMorocco
  2. 2.Institut Supérieur des Professions Infirmières et Techniques de SantéMarrakech-SafiMorocco
  3. 3.ONEE-Branche eau ChichaouaChichaouaMorocco
  4. 4.Laboratoire Mécaniques des Procédés Energétiques et Environnementaux, ENSATUniversité Ibno ZohrAgadirMorocco
  5. 5.AgroBioSciences Division Mohammed VI Polytechnic University (UM6P)BenguérirMorocco

Personalised recommendations