Advertisement

Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models

  • Akram Seifi
  • Hossien Riahi-Madvar
Research Article

Abstract

Simulation and prediction of the pollution transport is one of the major problems in environmental and rivers engineering studies. The numerical tools have been used in simulation of the concentration profile transmission for description of river water quality. The one-dimensional advection-dispersion equation (ADE) is used in applied water quality modeling and requires the accurate estimation of longitudinal dispersion coefficient (Dx). This paper develops a hybrid numerical-intelligence model for dispersion modeling in open-channel flows. The main contribution of this paper is to improve the results of 1D numerical simulation of pollutant transport in steady flows by estimation of dispersion coefficient (Dx) based on artificial intelligence models and subset selection of maximum dissimilarity (SSMD). The developed hybrid model uses an intelligence module based on optimized adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for longitudinal dispersion estimation, in which their structures are optimized by genetic algorithm (GA). Intelligence estimates of Dx by ANN, ANFIS, ANFIS-GA, ANN-GA, multiple linear regression (MLR), and empirical equation are compared with observed values of Dx available in 505 river section, and the ANFIS-GA, as the most accurate, is incorporated and integrated with developed 1D-ADE numerical module. The numerical solution of 1D-ADE is done using physically influenced scheme (PIS) for face flux estimation in finite volume method. The performance of hybrid models PIS-ANFIS-GA, PIS-ANFIS, and PIS-empirical is compared using the R2, RMSE, MAE, and NSE values in comparison with analytical solution and measured concentration hydrographs. The results revealed that the hybrid numerical-intelligence model is more accurate than the other classical methods for sediment/pollutant dispersion prediction in open-channel flows. The developed hybrid numerical-intelligence model can accurately simulate the dispersion processes in rivers and is a novel step in applicability of ANFIS-GA and ANN-GA models.

Graphical abstract

Keywords

ANN-GA Numerical-intelligence hybrid model Longitudinal dispersion MLR Advection-dispersion PIS-ANFIS-GA 

References

  1. Adib A, Mahmoodi A (2017) Prediction of suspended sediment load using ANN GA conjunction model with Markov chain approach at flood conditions. KSCE J Civ Eng 21(1):447–457.  https://doi.org/10.1007/s12205-016-0444-2 CrossRefGoogle Scholar
  2. Ahmad Z (2013) Prediction of longitudinal dispersion coefficient using laboratory and field data: relationship comparisons. Hydrol Res 44(2):362–376.  https://doi.org/10.2166/nh.2012.047 CrossRefGoogle Scholar
  3. Ahmad Z, Mathur RP, Ranga Raju KG, Kothyari UC (2007) Longitudinal dispersion of conservative pollutants in open channels (doctoral dissertation)Google Scholar
  4. Alizadeh MJ, Nodoushan EJ, Kalarestaghi N, Chau KW (2017a) Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models. Environ Sci Pollut Res 24(36):28017–28025.  https://doi.org/10.1007/s11356-017-0405-4 CrossRefGoogle Scholar
  5. Alizadeh MJ, Shabani A, Kavianpour MR (2017b) Predicting longitudinal dispersion coefficient using ANN with metaheuristic training algorithms. Int J Environ Sci Technol 14(11):2399–2410.  https://doi.org/10.1007/s13762-017-1307-1 CrossRefGoogle Scholar
  6. Altunkaynak A (2016) Prediction of longitudinal dispersion coefficient in natural streams by prediction map. J Hydro Environ Res 12:105–116.  https://doi.org/10.1016/j.jher.2016.05.001 CrossRefGoogle Scholar
  7. Ansari M, Othman F, Abunama T, El-Shafie A (2018) Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia. Environ Sci Pollut Res 25(12):12139–12149.  https://doi.org/10.1007/s11356-018-1438-z CrossRefGoogle Scholar
  8. Azadeh A, Saberi M, Anvari M, Azaron A, Mohammadi M (2011) An adaptive network based fuzzy inference system–genetic algorithm clustering ensemble algorithm for performance assessment and improvement of conventional power plants. Expert Syst Appl 38(3):2224–2234.  https://doi.org/10.1016/j.eswa.2010.08.010 CrossRefGoogle Scholar
  9. Bardestani S, Givehchi M, Younesi E, Sajjadi S, Shamshirband S, Petkovic D (2017) Predicting turbulent flow friction coefficient using ANFIS technique. SIViP 11(2):341–347.  https://doi.org/10.1007/s11760-016-0948-8 CrossRefGoogle Scholar
  10. Baseri H, Belali-Owsia M (2017) A novel hybrid ICA-ANFIS model for prediction of manufacturing processes performance. Proc IMechE Part E: J Process Mechanical Engineering 231(2):181–190.  https://doi.org/10.1177/0954408915585256 CrossRefGoogle Scholar
  11. Baylar A, Hanbay D, Ozpolat E (2008) An expert system for predicting aeration performance of weirs by using ANFIS. Expert Syst Appl 35(3):1214–1222.  https://doi.org/10.1016/j.eswa.2007.08.019 CrossRefGoogle Scholar
  12. Bayram S, Al-Jibouri S (2016) Efficacy of estimation methods in forecasting building projects’ costs. J Constr Eng Manag 142(11):05016012.  https://doi.org/10.1061/(ASCE)CO.1943-7862.0001183 CrossRefGoogle Scholar
  13. Beltaos S (1978) An interpretation of longitudinal dispersion data in rivers. Report No. SER 78–3, Transportation and Surface Water Div, Alberta Research Council, Edmonton, CanadaGoogle Scholar
  14. Boxall JB, Guymer I (2007) Longitudinal mixing in meandering channels: new experimental data set and verification of a predictive technique. Water Res 41(2):341–354.  https://doi.org/10.1016/j.watres.2006.10.010 CrossRefGoogle Scholar
  15. Calandro AJ (1978) Time of travel of solute contaminants in streams. US Geological Survey: Water Resources Technical Report (17)Google Scholar
  16. Carleton JN, Montas HJ (2010) An analysis of performance models for free water surface wetlands. Water Res 44(12):3595–3606.  https://doi.org/10.1016/j.watres.2010.04.008 CrossRefGoogle Scholar
  17. Carr ML, Rehmann CR (2007) Measuring the dispersion coefficient with acoustic Doppler current profilers. J Hydraul Eng 133(8):977–982.  https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977) CrossRefGoogle Scholar
  18. Chatila JG (1998) Modelling of pollutant transport in compound open channels (Doctoral dissertation, University of Ottawa)Google Scholar
  19. Choi SU, Choi B, Lee S (2017) Prediction of local scour around bridge piers using the ANFIS method. Neural Comput & Applic 28(2):335–344CrossRefGoogle Scholar
  20. Citakoglu H (2015) Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Comput Electron Agric 118:28–37.  https://doi.org/10.1016/j.compag.2015.08.020 CrossRefGoogle Scholar
  21. Citakoglu H (2017) Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey. Theor Appl Climatol 130 (1-2):545–556CrossRefGoogle Scholar
  22. Citakoglu H, Cobaner M, Haktanir T, Kisi O (2014) Estimation of monthly mean reference evapotranspiration in Turkey. Water Resour Manag 28(1):99–113.  https://doi.org/10.1007/s11269-013-0474-1 CrossRefGoogle Scholar
  23. Cobaner M, Citakoglu H, Kisi O, Haktanir T (2014) Estimation of mean monthly air temperatures in Turkey. Comput Electron Agric 109:71–79.  https://doi.org/10.1016/j.compag.2014.09.007 CrossRefGoogle Scholar
  24. Darbandi M, Bostandoost SM (2005) A new formulation toward unifying the velocity role in collocated variable arrangement. Numer. Heat Transfer B Fund 47(4):361–382.  https://doi.org/10.1080/10407790590901620 CrossRefGoogle Scholar
  25. Darbandi M, Schneider GE (1999) Application of an all-speed flow algorithm to heat transfer problems. Numer. Heat Transfer A App 35(7):695–715.  https://doi.org/10.1080/104077899274985
  26. Darbandi M, Vakilipour S (2008) Developing implicit pressure-weighted upwinding scheme to calculate steady and unsteady flows on unstructured grids. Int J Numer Methods Fluids 56(2):115–141.  https://doi.org/10.1002/fld.1451 CrossRefGoogle Scholar
  27. Darbandi M, Mazaheri-Body K, Vakilipour S (2003) A pressure weighted upwinding scheme for calculating flows on unstructured grids.  Proc Int conf on Com Meth in Sci and Eng (ICCMSE 2003):138–143.  https://doi.org/10.1142/9789812704658_0031
  28. Darbandi M, Mokarizadeh V, Roohi E (2007) Developing a shock-capturing formulation with higher performance to capture Normal standing shock in all-speed regimeGoogle Scholar
  29. Darbandi M, Roohi E, Mokarizadeh V (2008) Conceptual linearization of Euler governing equations to solve high speed compressible flow using a pressure-based method. Numerical Methods for Partial Differential Equations: An International Journal 24(2):583–604.  https://doi.org/10.1002/num.20275 CrossRefGoogle Scholar
  30. Day TJ (1975) Longitudinal dispersion in natural channels. Water Resour Res 11(6):909–918.  https://doi.org/10.1029/WR011i006p00909 CrossRefGoogle Scholar
  31. Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11):919–927.  https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(919) CrossRefGoogle Scholar
  32. Deng ZQ, Bengtsson L, Singh VP, Adrian DD (2002) Longitudinal dispersion coefficient in single-channel streams. J Hydraul Eng 128(10):901–916.  https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(901) CrossRefGoogle Scholar
  33. Disley T, Gharabaghi B, Mahboubi AA, McBean EA (2015) Predictive equation for longitudinal dispersion coefficient. Hydrol Process 29(2):161–172.  https://doi.org/10.1002/hyp.10139 CrossRefGoogle Scholar
  34. Elkatatny S, Mahmoud M, Tariq Z, Abdulraheem A (2017) New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Comput & Applic:1–11.  https://doi.org/10.1007/s00521-017-2850-x CrossRefGoogle Scholar
  35. Elzwayie A, El-Shafie A, Yaseen ZM, Afan HA, Allawi MF (2017) RBFNN-based model for heavy metal prediction for different climatic and pollution conditions. Neural Comput & Applic 28(8):1991–2003.  https://doi.org/10.1007/s00521-015-2174-7 CrossRefGoogle Scholar
  36. Fischer HB (1975) Simple method for predicting dispersion in streams. J Environ Eng Div ASCE 3:453–455Google Scholar
  37. Fortin JG, Morais A, Anctil F, Parent LE (2015) SVMLEACH–NK POTATO: a simple software tool to simulate nitrate and potassium co-leaching under potato crop. Comput Electron Agric 110:259–266.  https://doi.org/10.1016/j.compag.2014.11.025 CrossRefGoogle Scholar
  38. Gharabaghi, Bahram, Sattar A (2017) Empirical models for longitudinal dispersion coefficient in natural streams. J Hydrol.  https://doi.org/10.1016/j.jhydrol.2017.01.022
  39. Graf WH (1998) Fluvial hydraulics: flow and transport processes in channels of simple geometry. In: collaboration with M.S. Altinakar. Wiley, England, 681 pages [ISBN 0-471-97714-4]Google Scholar
  40. Gupta AK, Kumar P, Sahoo RK, Sahu AK, Sarangi SK (2017) Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA. J Com Design Eng 4(1):60–68.  https://doi.org/10.1016/j.jcde.2016.07.002 CrossRefGoogle Scholar
  41. Hamedi A, Fuentes HR (2016) New relationship between a vertical gate opening and downstream flow stability: experimental development. In: World environmental and water resources congress, vol 2016, pp 47–57.  https://doi.org/10.1061/9780784479872.006
  42. Hanafizadeh P, Saidi MH, Darbandi M, Kebriaee A (2010) Numerical simulation of two-phase flow in airlift pumps using the physical influence scheme. Prog Comput Fluid Dy 10(3):186–194CrossRefGoogle Scholar
  43. Heddam S, Kisi O (2017) Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Environ Sci Pollut Res 24(20):16702–16724.  https://doi.org/10.1007/s11356-017-9283-z CrossRefGoogle Scholar
  44. Helsel DR, Hirsch RM (2002) Statistical methods in water resources, techniques of water-resources investigations of the United States, Book 4. Chapter A3, http://water.usgs.gov/pubs/twri/twri4a3
  45. Hou H, Christensen BA (1976) Influence of equivalent sand roughness on the dispersion coefficient in laboratory and natural stream. In: 3rd Annual Symp. Waterways, Harbors and Coastal Engineering Div, ASCE, vol 2. Colorado State University, Fort Collins, Rivers, pp 1179–1198Google Scholar
  46. James RW, Helinsky BM (1984) Time of travel and dispersion in the Jones Falls, Baltimore, Maryland (no. 84-4203). US Geological SurveyGoogle Scholar
  47. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23(3):665–685.  https://doi.org/10.1109/21.256541 CrossRefGoogle Scholar
  48. Kalinić H, Mihanović H, Cosoli S, Tudor M, Vilibić I (2017) Predicting ocean surface currents using numerical weather prediction model and Kohonen neural network: a northern Adriatic study. Neural Comput & Applic 28(1):611–620.  https://doi.org/10.1007/s00521-016-2395-4 CrossRefGoogle Scholar
  49. Karkevandi-Talkhooncheh A, Hajirezaie S, Hemmati-Sarapardeh A, Husein MM, Karan K, Sharifi M (2017) Application of adaptive neuro fuzzy interface system optimized with evolutionary algorithms for modeling CO2-crude oil minimum miscibility pressure. Fuel 205:34–45.  https://doi.org/10.1016/j.fuel.2017.05.026 CrossRefGoogle Scholar
  50. Kashefipour SM, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Res 36(6):1596–1608.  https://doi.org/10.1016/S0043-1354(01)00351-7 CrossRefGoogle Scholar
  51. Kawaguchi Y, Tao WQ, Ozoe H (2002) Checkerboard pressure predictions due to the underrelaxation factor and time step size for a nonstaggered grid with momentum interpolation method. Numer. Heat Transfer B Fund. 41(1):85–94.  https://doi.org/10.1080/104077902753385027 CrossRefGoogle Scholar
  52. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148.  https://doi.org/10.1080/00401706.1969.10490666 CrossRefGoogle Scholar
  53. Keshtegar B, Piri J, Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput Electron Agric 127:120–130.  https://doi.org/10.1016/j.compag.2016.05.018 CrossRefGoogle Scholar
  54. Kisi O, Genc O, Dinc S, Zounemat-Kermani M (2016) Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput Electron Agric 122:112–117.  https://doi.org/10.1016/j.compag.2016.01.026 CrossRefGoogle Scholar
  55. Korkmaz A, Akmaz HK (2015) Numerical simulations for transport of conservative pollutants. Selçuk J Appl Math 16(1)Google Scholar
  56. Lajiness M, Watson I (2008) Dissimilarity-based approaches to compound acquisition. Curr Opin Chem Biol 12(3):366–371.  https://doi.org/10.1016/j.cbpa.2008.03.010 CrossRefGoogle Scholar
  57. Landeras G, López JJ, Kisi O, Shiri J (2012) Comparison of gene expression programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (northern Spain). Energy Convers Manag 62:1–13.  https://doi.org/10.1016/j.enconman.2012.03.025 CrossRefGoogle Scholar
  58. Lateb M, Meroney RN, Yataghene M, Fellouah H, Saleh F, Boufadel MC (2016) On the use of numerical modelling for near-field pollutant dispersion in urban environments—a review. Environ Pollut 208:271–283.  https://doi.org/10.1016/j.envpol.2015.07.039 CrossRefGoogle Scholar
  59. Li X, Liu H, Yin M (2013) Differential evolution for prediction of longitudinal dispersion coefficients in natural streams. Water Resour Manag 27(15):5245–5260.  https://doi.org/10.1007/s11269-013-0465-2 CrossRefGoogle Scholar
  60. Liu H (1977) Predicting dispersion coefficient of streams. J Environ Eng Div 103(1):59–69Google Scholar
  61. McQuivey RS, Keefer TN (1976) Dispersion—Mississippi River below Baton Rouge, La. J Hydraul Div 102(10):1425–1437Google Scholar
  62. Miller AC, Richardson EV (1974) Diffusion and dispersion in open channel flow. J Hydraul Div ASCE 100(1):159–171Google Scholar
  63. Mohammadi K, Shamshirband S, Motamedi S, Petković D, Hashim R, Gocic M (2015) Extreme learning machine based prediction of daily dew point temperature. Comput Electron Agric 117:214–225.  https://doi.org/10.1016/j.compag.2015.08.008 CrossRefGoogle Scholar
  64. Montgomery D, Peck E, Vining G (2001) Introduction to linear regression analysis, 3rd edn. John Wiley, New YorkGoogle Scholar
  65. Mukerji A, Chatterjee C, Raghuwanshi NS (2009) Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng 14(6):647–652.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000040 CrossRefGoogle Scholar
  66. Najafzadeh M, Tafarojnoruz A (2016) Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ Earth Sci 75(2):157.  https://doi.org/10.1007/s12665-015-4877-6 CrossRefGoogle Scholar
  67. Najafzadeh M, Zeinolabedini M (2018) Derivation of optimal equations for prediction of sewage sludge quantity using wavelet conjunction models: an environmental assessment. Environ Sci Pollut Res 25:1–13.  https://doi.org/10.1007/s11356-018-1975-5 CrossRefGoogle Scholar
  68. Noori R, Deng Z, Kiaghadi A, Kachoosangi FT (2015) How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? J Hydraul Eng 142(1):04015039.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0001062 CrossRefGoogle Scholar
  69. Nordin CF, Sabol GV (1974) Empirical data on longitudinal dispersion in rivers (no. 74-20). US Geological Survey.  https://doi.org/10.3133/wri7420
  70. Norhayati I, Rashid M (2017) Adaptive neuro-fuzzy prediction of carbon monoxide emission from a clinical waste incineration plant. Neural Comput & Applic:1–13.  https://doi.org/10.1007/s00521-017-2921-z CrossRefGoogle Scholar
  71. Pannu HS, Singh D, Malhi AK (2017) Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Comput & Applic:1–11.  https://doi.org/10.1007/s00521-017-3181-7
  72. Patankar SV (1980) Numerical heat transfer and fluid flow. Taylor & FrancisGoogle Scholar
  73. Phukoetphim P, Shamseldin AY, Melville BW (2013) Knowledge extraction from artificial neural networks for rainfall-runoff model combination systems. J Hydrol Eng 19(7):1422–1429.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000941 CrossRefGoogle Scholar
  74. Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrog Energy 42(22):15211–15225.  https://doi.org/10.1016/j.ijhydene.2017.04.044 CrossRefGoogle Scholar
  75. Riahi  H, Ayyoubzadeh S A (2010) Developing a physically influenced scheme for finite volume solution of fully dynamic saint–venant equations.  Procs of 2nd National Conf Non-Oper Def in Agric, TehranGoogle Scholar
  76. Riahi-Madvar H, Ayyoubzadeh SA, Khadangi E, Ebadzadeh MM (2009) An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS. Expert Syst Appl 36(4):8589–8596.  https://doi.org/10.1016/j.eswa.2008.10.043 CrossRefGoogle Scholar
  77. Riahi-Madvar H, Ayyoubzadeh SA, Atani MG (2011) Developing an expert system for predicting alluvial channel geometry using ANN. Expert Syst Appl 38(1):215–222.  https://doi.org/10.1016/j.eswa.2010.06.047 CrossRefGoogle Scholar
  78. Rowiński PM, Piotrowski A, Napiórkowski JJ (2005) Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers?/Les techniques de réseaux de neurones artificiels sont-elles pertinentes pour estimer le coefficient de dispersion longitudinale en rivières? Hydrol Sci J 50(1).  https://doi.org/10.1623/hysj.50.1.175.56339
  79. Sarkheyli A, Zain AM, Sharif S (2015) Robust optimization of ANFIS based on a new modified GA. Neurocomputing 166:357–366.  https://doi.org/10.1016/j.neucom.2015.03.060 CrossRefGoogle Scholar
  80. Sattar AM, Gharabaghi B (2015) Gene expression models for prediction of longitudinal dispersion coefficient in streams. J Hydrol 524:587–596.  https://doi.org/10.1016/j.jhydrol.2015.03.016 CrossRefGoogle Scholar
  81. Seo IW, Baek KO (2004) Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams. J Hydraul Eng 130(3):227–236.  https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(227) CrossRefGoogle Scholar
  82. Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124(1):25–32.  https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25) CrossRefGoogle Scholar
  83. Shafaei SM, Nourmohamadi-Moghadami A, Kamgar S (2016) Development of artificial intelligence based systems for prediction of hydration characteristics of wheat. Comput Electron Agric 128:34–45.  https://doi.org/10.1016/j.compag.2016.08.014 CrossRefGoogle Scholar
  84. Shahlaei M, Madadkar-Sobhani A, Saghaie L, Fassihi A (2012) Application of an expert system based on genetic algorithm–adaptive neuro-fuzzy inference system (GA–ANFIS) in QSAR of cathepsin K inhibitors. Expert Syst Appl 39(6):6182–6191.  https://doi.org/10.1016/j.eswa.2011.11.106 CrossRefGoogle Scholar
  85. Singh UP (1987) Dispersion of conservative pollutant. A PhD. Thesis submitted at University of Roorkee, IndiaGoogle Scholar
  86. Tashnehlab M, Menhaj S (2001) Modeling trip tours using ANFIS modeling. University College of Engineering 31(3):361–370Google Scholar
  87. Tayfur G, Singh VP (2005) Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 131(11):991–1000.  https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(991) CrossRefGoogle Scholar
  88. Taylor GI (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc Lond A 223(1155):446–468.  https://doi.org/10.1098/rspa.1954.0130 CrossRefGoogle Scholar
  89. Toprak ZF, Cigizoglu HK (2008) Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol Process 22(20):4106–4129.  https://doi.org/10.1002/hyp.7012 CrossRefGoogle Scholar
  90. Tuntas R, Dikici B (2017) An ANFIS model to prediction of corrosion resistance of coated implant materials. Neural Comput & Applic 28(11):3617–3627.  https://doi.org/10.1007/s00521-017-3103-8 CrossRefGoogle Scholar
  91. Vakilipour S, Mohammadi M, Riazi R (2016) Development of an implicit physical influence upwinding scheme for cell-centered finite volume method. Modares Mech Eng 16(10):253–265Google Scholar
  92. Valdés-Vela M, Abrisqueta I, Conejero W, Vera J, Ruiz-Sánchez MC (2015) Soft computing applied to stem water potential estimation: a fuzzy rule based approach. Comput Electron Agric 115:150–160.  https://doi.org/10.1016/j.compag.2015.05.019 CrossRefGoogle Scholar
  93. Wang Y, Huai W (2016) Estimating the longitudinal dispersion coefficient in straight natural rivers. J Hydraul Eng 142(11):04016048.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0001196 CrossRefGoogle Scholar
  94. Wang YF, Huai WX, Wang WJ (2017) Physically sound formula for longitudinal dispersion coefficients of natural rivers. J Hydrol 544:511–523.  https://doi.org/10.1016/j.jhydrol.2016.11.058 CrossRefGoogle Scholar
  95. Wu W (2007) Computational River Dynamics. Taylor & Francis/Balkema, AK Leiden, The NetherlandsCrossRefGoogle Scholar
  96. Yi W, Corbett D, Yuan XF (2016) An improved Rhie–Chow interpolation scheme for the smoothed-interface immersed boundary method. Int J Numer Methods Fluids 82(11):770–795.  https://doi.org/10.1002/fld.4240 CrossRefGoogle Scholar
  97. Zadeh LA (1985) Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions. IEEE Trans Syst Man Cybern 15(6):754–763CrossRefGoogle Scholar
  98. Zia H, Harris N, Merrett G, Rivers M (2015) Predicting discharge using a low complexity machine learning model. Comput Electron Agric 118:350–360.  https://doi.org/10.1016/j.compag.2015.09.012 CrossRefGoogle Scholar
  99. Zounemat-Kermani M, Ghiasi-Tarzi O (2017) Using natural element mesh-free numerical method in solving shallow water equations. Eur J Environ Civ Eng 21(6):753–767.  https://doi.org/10.1080/19648189.2016.1150896 CrossRefGoogle Scholar
  100. Zounemat-Kermani M, Kisi O (2015) Time series analysis on marine wind-wave characteristics using chaos theory. Ocean Eng 100:46–53.  https://doi.org/10.1016/j.oceaneng.2015.03.013 CrossRefGoogle Scholar
  101. Zounemat-Kermani M, Kişi Ö, Adamowski J, Ramezani-Charmahineh A (2016) Evaluation of data driven models for river suspended sediment concentration modeling. J Hydrol 535:457–472.  https://doi.org/10.1016/j.jhydrol.2016.02.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Water Engineering, College of AgricultureVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations