Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 672–683 | Cite as

Distilled pyroligneous liquor obtained from Eucalyptus grandis and chitosan: physicochemical properties of the solution and films

  • Fabiane Grecco da Silva Porto
  • Ângela Diniz Campos
  • Irene Teresinha Santos GarciaEmail author
Research Article
  • 87 Downloads

Abstract

The pyroligneous liquor is a product obtained during the production of charcoal, with well-known antimicrobial activity. In this work, we characterized the physical chemistry properties of a formulation composed of distilled pyroligneous liquor (DPL), obtained from Eucalyptus grandis, and chitosan. A good interaction between the polymer and the solvent was observed. Auto-supported films were prepared with these systems and characterized with respect to their structure and photo-protection properties, water vapor permeability, and resistance to water and to thermal degradation. They present a semi-crystalline structure and are hygroscopic, but are stable under immersion for up to 7 days. The swelling degree in water is 300% in weight and the permeability to water vapor was between 30 and 45 g m−1 h−1 (for films with 80 to 10 μm, respectively). The obtained films are able to efficiently block the incident UVB and UVC radiation; the molar absorptivity decreases exponentially with increasing wavelength and is stable up to 300 °C. These properties confer desirable properties to the films, obtained from these precursors of a renewable source, to be used as coatings.

Keywords

Distilled pyroligneous liquor Eucalyptus grandis Chitosan Colloidal systems Films Ultraviolet radiation Protective coating 

Notes

Acknowledgements

The authors thank Conselho Nacional de Pesquisa—CNPq (Proc. 311736/2015-7) and Vegetal Physiology Laboratory of EMBRAPA Clima Temperado.

Supplementary material

11356_2018_3590_MOESM1_ESM.docx (167 kb)
ESM 1 (DOCX 167 kb)

References

  1. Almeida RSR, Taccini MM, Moura LF, Ceribelli UL, Brito JO, Glória EM (2017a) Potential of pyroligneous extract of Eucalyptus wood as a preservative of cosmetic and sanitizing products. Waste Biomass Valoriz.  https://doi.org/10.1007/s12649-017-0125-5
  2. Almeida RSR, Taccini MM, Moura LF, Ceribelli UL, Brito JO, Millan M (2017b) Effect of storage time on the chemical characterization of pyroligneous liquor from Eucalyptus wood. Waste Biomass Valoriz.  https://doi.org/10.1007/s12649-017-0067-y
  3. Arabancita MY, López-Caballero ME, Gómez-Guillén MC, Fernández-Garcá M, Fernández-Martín F, Montero P (2015) Antimicrobial and rheological properties of chitosan as affected by extracting conditions and humidity exposure. LWT Food Sci Technol 60:802–810.  https://doi.org/10.1016/j.lwt.2014.10.019 CrossRefGoogle Scholar
  4. ASTM - American Society for Testing and Materials (1995) ASTM standard test methods for determining gas permeability characteristics of plastic film and sheeting. ASTM, PhiladelphiaGoogle Scholar
  5. Babak VG, Auzely R, Rinaudo M (2007) Effect of electrolyte concentration on the dynamic surface tension and dilational viscoelasticity of adsorption layers of chitosan and dodecyl chitosan. J Phys Chem B 111:9519–9529 https://pubs.acs.org/doi/abs/10.1021/jp0718653 CrossRefGoogle Scholar
  6. Badawy MEI, Rabea EI (2009) Potencial of the biopolymer with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51:110–117.  https://doi.org/10.1016/j.postharvbio.2008.05.018 CrossRefGoogle Scholar
  7. Bazunova MV, Valiev DR, Chernova VV, Kulish EI (2015) Rheological properties of solutions of chitosan and its complexes with colloid particles of a silver iodide sol. Polym Sci Ser A 57:675–679.  https://doi.org/10.1134/S0965545X15050041 CrossRefGoogle Scholar
  8. Brown W (1994) Light scattering: principals and development. Clarendon Press, OxfordGoogle Scholar
  9. Campos AD (2018) Processo de coleta e produção de extrato pirolenhoso para uso agrícola. Technical document 178, Embrapa Clima Temperado, Pelotas (in portuguese). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/177829/1/Angela-Diniz-Campos-Circular-178.pdf
  10. Campos AD, Ueno B, Porto FGS, Antunes IF, Garcia ITS, Pereira JFM, Castro LAS, Scivittaro WB (2012) Processo de obtenção de formulação com capacidade fertilizante e fitoprotetora, Formulação com capacidade fertilizante e fitoprotetora, Uso da formulação com capacidade fertilizante e fitoprotetora. Registered at Instituto Nacional de Propriedade Intelectual in Brazil (PCT/BR2013/000597), In United States (US20150336854 A1) and in Germany (DE112013006230T5)Google Scholar
  11. Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydr Polym 83:171–178.  https://doi.org/10.1016/j.carbpol.2010.07.038 CrossRefGoogle Scholar
  12. Daroit D, Moura ABD, Martins IPD (2013) Vegetable charcoal and pyroligneous acid: technological, economical and legal aspects of its production and commerce. J Technol Manag Innov 8:310–320.  https://doi.org/10.4067/S0718-27242013000300028 CrossRefGoogle Scholar
  13. Dehghani MH, Dehghan A, Alidadi H, Dolatabadi M, Mehrabpour M, Converti A (2017a) Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: kinetic and equilibrium study. Korean J Chem Eng 34:1699–1707.  https://doi.org/10.1007/s11814-017-0077-2 CrossRefGoogle Scholar
  14. Dehghani MH, Zarei A, Mesdaghinia A, Nabizadeh R, Alimohammadi M, Afsharnia M (2017b) Adsorption of Cr(VI) ions from aqueous systems using thermally sodium organo-bentonite biopolymer composite (TSOBC): response surface methodology, isotherm, kinetic and thermodynamic studies. Desalin Water Treat 85:298–312.  https://doi.org/10.5004/dwt.2017.21306 CrossRefGoogle Scholar
  15. Dehghani MH, Zarei A, Mesdaghinia A, Nabizadeh R, Alimohammadi A, Afsharnia M (2017c) Response surface modeling, isotherm, thermodynamic and optimization study of arsenic (V) removal from aqueous solutions using modified bentonite-chitosan (MBC). Korean J Chem Eng 34:757–767.  https://doi.org/10.1007/s11814-016-0330-0 CrossRefGoogle Scholar
  16. Di Piero RM, Garda MV (2008) Quitosana reduz a severidade da antracnose e aumenta a atividade de glucanase em feijoeiro-comum. Pesq Agrop Brasileira 43:1121–1128.  https://doi.org/10.1590/S0100-204X2008000900004 CrossRefGoogle Scholar
  17. Fráguas RM, Simão AA, Faria PV, Queiroz ER, Oliveira EN Jr, CMP A (2015) Preparation and characterization of chitosan edible films. Polímeros 25:48–53.  https://doi.org/10.1590/0104-1428.1656 CrossRefGoogle Scholar
  18. Furtado CM, Stolz AS, Pinto FL, Moura ABD, Morisso FDP, Pitarelo AP, Ramos LP, Mühlen CV, Riegel-Vidotti IC (2015) Pyroligneous liquor produced from Acacia mearnsii de wild wood under controlled conditions as a renewable source of chemicals. Quim Nova 38:1068–1074.  https://doi.org/10.5935/0100-4042.20150120 CrossRefGoogle Scholar
  19. Ghosh A, Ali MA (2012) Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J Mater Sci 47:1196–1204.  https://doi.org/10.1007/s10853-011-5885-x CrossRefGoogle Scholar
  20. Kara HH, Xiao FG, Sarker M, Jin TZ, Sousa AMM, Liu CK, Tomasula PM, Liu LS (2016) Antibacterial poly(lactic acid) (PLA) films grafted with electrospun PLA/allyl isothiocyanate fibers for food packaging. J Appl Polym Sci 133:42475.  https://doi.org/10.1002/app.42475 CrossRefGoogle Scholar
  21. Kim KW, Min BJ, Kim YT, Kimmel RM, Cooksey K, Park SI (2011) Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT Food Sci Technol 44:565–569.  https://doi.org/10.1016/j.lwt.2010.08.001 CrossRefGoogle Scholar
  22. Lee DW, Lim C, Israelachvili JN, Hwang DS (2013) Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir 29:14222–14229 https://pubs.acs.org/doi/10.1021/la403124u CrossRefGoogle Scholar
  23. Li J, Huang Q (2012) Rheological properties of chitosan-tripolyphosphate complexes: from suspensions to microgels. Carbohydr Polym 87:1670–1677.  https://doi.org/10.1016/j.carbpol.2011.09.074 CrossRefGoogle Scholar
  24. Liu M, Zhou Y, Zhang Y, Yu C, Cao S (2013) Preparation and structural analysis of chitosan films with and without sorbitol. Food Hydrocoll 33:186–191.  https://doi.org/10.1016/j.foodhyd.2013.03.003 CrossRefGoogle Scholar
  25. Lohri CR, Diener S, Zabaleta I, Mertenat A, Zurbrügg C (2017) Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Rev Environ Sci Biotechonol 16:81–130.  https://doi.org/10.1007/s11157-017-9422-5 CrossRefGoogle Scholar
  26. Mathew S, Zakaria ZA (2015) Pyroligneous acid—the smoky acidic liquid from plant biomass. Appl Microbiol Biotechnol 99:611–622.  https://doi.org/10.1007/s00253-014-6242-1 CrossRefGoogle Scholar
  27. Melo TA, Araújo MUP, Serra IMRS, Pascholati SF (2017) Produtos naturais disponíveis comercialmente induzem o acúmulo de fitoalexinas em cotilédones de soja e mesocótilos de sorgo. Summa Phytopathol 43:205–211.  https://doi.org/10.1590/0100-5405/167358 CrossRefGoogle Scholar
  28. Nady N, Kandil SH (2018) Novel blend for producing porous chitosan-based films suitable for biomedical applications. Membranes 8:1–18.  https://doi.org/10.3390/membranes8010002 CrossRefGoogle Scholar
  29. Ocak B (2018) Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan. Environ Sci Pollut Res 25:4643–4655.  https://doi.org/10.1007/s11356-017-0843-z CrossRefGoogle Scholar
  30. Pa J, Yu L (2001) Light scattering study of chitosan in acetic acid aqueous solutions. Macromol Chem Phys 202:985–991.  https://doi.org/10.1002/1521-3935(20010401)202:7<985::AID-MACP985>3.0.CO;2-2 CrossRefGoogle Scholar
  31. Pereira EG, Martins MA, Pecenka R, Carneiro ACO (2017) Pyrolysis gases burners: sustainability for integrated production of charcoal, heat and electricity. Renew Sust Energ Rev 75:592–600.  https://doi.org/10.1016/j.rser.2016.11.028 CrossRefGoogle Scholar
  32. Pimenta AS, Fasciotti M, Monteiro TVC, Lima KMG (2018) Chemical composition of pyroligneous acid obtained from Eucalyptus GG100 clone. Molecules 23:426–438.  https://doi.org/10.3390/molecules23020426 CrossRefGoogle Scholar
  33. Plotegher F (2010) Desenvolvimento de compósitos poliméricos baseados em matriz biodegradável e nanozeólitas. Dissertação, Universidade Federal de São Carlos (in Portuguese)Google Scholar
  34. Pohlmann AR, et al. (2008) Tópicos em Nanociência e Nanotecnologia: II Mostra CNANO UFRGS. Editora Universidade Federal do Rio Grande do Sul, Porto Alegre (in Portuguese)Google Scholar
  35. Porto FGS (2011) Caracterização de quitosana em ácido pirolenhoso destilado com potencial uso como coberturas protetoras. Dissertação, Universidade Federal de Pelotas (in Portuguese)Google Scholar
  36. Reiznautt QB, Garcia ITS, Furlanetto BG, Angeloni LM, Samios D (2017) Copper removal from aqueous solutions using a polyelectrolyte derived from sunflower oil: physicochemical aspects. J Environm Chem Eng 5:5512–5520.  https://doi.org/10.1016/j.jece.2017.10.039 CrossRefGoogle Scholar
  37. Rong Q, Feng F, Ma Z (2016) Metal ions doped chitosan–poly(acrylic acid) nanospheres: synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens Bioelectron 75:148–154.  https://doi.org/10.1016/j.bios.2015.08.041 CrossRefGoogle Scholar
  38. Schifino J (2013) Tópicos de Físico Química. Editora Universidade Federal do Rio Grande do Sul, Porto Alegre (in Portuguese)Google Scholar
  39. Shipovskaya AB, Abramov AY, Pyshnograi GV, Aziz AJHN (2016) Rheological properties of aqueous acid solutions of chitosan: experiment and calculations of the viscometric functions on the basis of a mesoscopic model. J Eng Phys Thermophys 89:642–651.  https://doi.org/10.1007/s10891-016-1422-8 CrossRefGoogle Scholar
  40. Silva VC, Rodrigues CM (2014) Natural products: an extraordinary source of value-added compounds from diverse biomasses in Brazil. Chem and Biol Technol Agric 1(14).  https://doi.org/10.1186/s40538-014-0014-0
  41. Silva CJ, Karsburg IV, Dias PC, Arruda TPM (2017) Pyroligneous liquor effect on in and ex vitro production of Oeceoclades maculata (Lindl) Lindl. Rev Caatinga 30:947–954.  https://doi.org/10.1590/1983-21252017v30n415rc CrossRefGoogle Scholar
  42. Silverstein RM, Webster FX (2000) Identificação Espectrofotométrica de Compostos Orgânicos. LTC, Rio de Janeiro (in Portuguese)Google Scholar
  43. Souza JBG, Ré-Poppi N, Raposo JL Jr (2012) Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. J Braz Chem Soc 23:610–617.  https://doi.org/10.1590/S0103-50532012000400005 CrossRefGoogle Scholar
  44. Suresh PV, Raj KR, Nidheesh T, Pal GK, Sakhare PZ (2015) Application of chitosan for improvement of quality and shelf life of table eggs under tropical room conditions. J Food Sci Technol 52:6345–6354.  https://doi.org/10.1007/s13197-015-1721-7 CrossRefGoogle Scholar
  45. Tayel AA, Moussa S, Opwis K, Knittel D, Schollmeyer E, Hartfiel AN (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47:10–14.  https://doi.org/10.1016/j.ijbiomac.2010.04.005 CrossRefGoogle Scholar
  46. Theapparat Y, Chandumpai A, Leelasuphakul W, Laemsak N (2015) Pyroligneous acids from carbonization of wood and bamboo: their components and antifungal activity. J Trop For Sci 27:517–526 http://www.jstor.org/stable/43596228 Google Scholar
  47. Togoro AH, Silva JAS, Cazetta OJ (2014) Chemical changes in oxisol treated with pyroligneous acid. Ciênca e Agrotec 38:113–121.  https://doi.org/10.1590/S1413-70542014000200002 CrossRefGoogle Scholar
  48. Villetti MA, Bica CID, Garcia ITS, Pereira FV, Ziembowicz FI, Kloster CL, Giacomelli C (2011) Physicochemical properties of methylcellulose and dodecyltrimethylammonium bromide in aqueous medium. J Phys Chem B 115:5868–5876.  https://doi.org/10.1021/jp110247r CrossRefGoogle Scholar
  49. Vimaladevi S, Panda SK, Xavier KAM, Bindu J (2015) Packaging performance of organic acid incorporated chitosan films on dried anchovy (Stolephorus indicus). Carbohydr Polym 127:189–194.  https://doi.org/10.1016/j.carbpol.2015.03.065 CrossRefGoogle Scholar
  50. Xiaolin T, Dafeng T, Zhongyan MF (2009) Synthesis and evaluation of chitosan-vitamin C eomplexes. J Appl Polym Sci 114:2986–2991.  https://doi.org/10.1002/app.30918 CrossRefGoogle Scholar
  51. Yakunin NA, Losev NV, Lipatova IM (2013) Influence of mechanical treatment on the structure and properties of chitosan solutions and films based on them. Fibre Chem 45:19–23.  https://doi.org/10.1007/s10692-013-9513-1 CrossRefGoogle Scholar
  52. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416.  https://doi.org/10.3390/ma4081399 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Fisiologia Vegetal, Embrapa Clima TemperadoPelotasBrazil
  2. 2.Departamento de Físico-Química, Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations