Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36775–36780 | Cite as

A study on the evaluation of water-bloom using image processing

  • Yeonwoo Choo
  • Guyoung Kang
  • Dongmin Kim
  • Sungjong Lee
Short Research and Discussion Article
  • 51 Downloads

Abstract

This study utilized remote sensing techniques using an unmanned aerial vehicle (UAV) with an attached multispectral sensor to monitor the Nakdong River. In this study, chlorophyll-a, an indicator of water quality and the normalization difference vegetation index (NDVI), which indicates the vitality of plant growth was employed. NDVI images were generated using georeferenced and Orthomosaic images. The data (field samples) used to conduct the study was collected in September 2017. The relationship between the chlorophyll-a concentrations and NDVI was then examined. The results of the relationship can be used in monitoring of green algae for water quality management.

Keywords

Chlorophyll-a Multispectral Unmanned aerial vehicle 

Notes

Funding information

This research was supported by a grant (17CTAP-C117026-02) from Technology Advancement Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government also was supported by a funding from Hankuk University of Foreign Studies (2017).

References

  1. Abd-Elrahman A, Croxton M, Chettri RP, Toor GS, smith S, Hil J (2011) In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system. ISPRS J Photogramm Remote Sens 66:463–472.  https://doi.org/10.1016/j.isprsjprs.2011.02.005 CrossRefGoogle Scholar
  2. Bendea H, Boccardo P, Dequal S, Giulio Tonolo F, Marenchino D, Piras M (2008) Low cost UAV for post-disaster assessment. Int Arch Photogramm Remote Sens Spat Inf Sci 37:1373–1379. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.2705&rep=rep1&type=pdf Google Scholar
  3. Bonansea M, Rodriguez MC, Pinotti L, Ferrero S (2015) Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens Environ 158:28–41.  https://doi.org/10.1016/j.rse.2014.10.032 CrossRefGoogle Scholar
  4. Cândido AKAA, Paranhos Filho AC, Haupenthal MR, Silva NM, Correa JS, Ribeiro ML (2016) Water quality and chlorophyll measurement through vegetation indices generated from orbital and suborbital images. Water Air Soil Pollut 224–227.  https://doi.org/10.1007/s11270-016-2919-7
  5. Chen L, Tan CH, Kao SJ, Wang TS (2008) Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery. Water Res 42:296–306.  https://doi.org/10.1016/j.watres.2007.07.014 CrossRefGoogle Scholar
  6. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photog Remote Sens 92:79–97.  https://doi.org/10.1016/j.isprsjprs.2014.02.013 CrossRefGoogle Scholar
  7. Cox RM, Forsythe RD, Vaughan GE, Olmsted LL (1998) Assessing water quality in the Catawba River reservoirs using Landsat thematic mapper satellite data. Lake Reserv Manage 14:405–416.  https://doi.org/10.1080/07438149809354347 CrossRefGoogle Scholar
  8. Doña C, Chang NB, Caselles V, Sánchez JM, Camacho A, Delegido J, Vannah BW (2015) Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J Environ Manag 151:416–426.  https://doi.org/10.1016/j.jenvman.2014.12.003 CrossRefGoogle Scholar
  9. Doxaran D, Froidefond JM, Lavender S, Castaing P (2002) Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens Environ 81:149–161.  https://doi.org/10.1016/S0034-4257(01)00341-8 CrossRefGoogle Scholar
  10. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water & wastewater, 10200 H. Chlorophyll 10:18–26. 21st ednGoogle Scholar
  11. Gitelson AA, Dall’Olmo G, Moses W, Rundquist DC, Barrow T, Fisher TR, Gurlin D, Holz J (2008) A simple semi-analytical model for remote estimation of chlorophyll-a in turbid water. Remote Sens Environ 112:3582–3593.  https://doi.org/10.1016/j.rse.2008.04.015 CrossRefGoogle Scholar
  12. Harvey ET, Kratzer S, Philipson P (2015) Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens Environ 158:417–430.  https://doi.org/10.1016/j.rse.2014.11.017 CrossRefGoogle Scholar
  13. Hu C, Chen Z, Clayton TD, Swarzenski P, Brock JC, Muller-Karger FE (2004) Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL. Remote Sens Environ 93:423–441.  https://doi.org/10.1016/j.rse.2004.08.007 CrossRefGoogle Scholar
  14. Lin J, H Tao, Y Wang, Z Huang (2010) Practical application of unmanned aerial vehicles for mountain hazards survey. International Conference on Geoinformatics Chengdu China, June. 1–5.  https://doi.org/10.1109/GEOINFORMATICS.2010.5567777
  15. Miller RL, McKee BA (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ 93:259–266.  https://doi.org/10.1016/j.rse.2004.07.012 CrossRefGoogle Scholar
  16. Moses WJ, Gitelson AA, Berdnikov S, Bowles JH, Povazhnyi V, Saprygin V, Wagner JE, Patterson KW (2014) HICO-based NIR–red models for estimating chlorophyll-a concentration in productive coastal waters. IEEE Geosci Remote Sens Lett 11:1111–1115.  https://doi.org/10.1109/LGRS.2013.2287458 CrossRefGoogle Scholar
  17. Ouillon S, Forget P, Froidefond JM, Naudin JJ (1997) Estimating suspended matter concentrations from SPOT data and from field measurements in the Rhône river plume. Mar Technol Soc J 31:15–20Google Scholar
  18. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010.  https://doi.org/10.1007/S00248-012-0159-Y CrossRefGoogle Scholar
  19. Patrick A, Pelham S, Culbreath A, Holbrook CC (2017) High throughput phenotyping of tomato spot wilt disease in peanut using unmanned aerial systems and multispectral imaging. IEEE Instrument and Measurement Society 20:4–12.  https://doi.org/10.1109/MIM.2017.7951684 CrossRefGoogle Scholar
  20. Su TC, Chou HT (2015) Application of multispectral sensors carried unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: a case study of Tain-Pu reservoir in Kinmen, Taiwan. Remote Sens 7:10078–10097.  https://doi.org/10.3390/rs70810078 CrossRefGoogle Scholar
  21. Tebbs EJ, Remedios JJ, Harper DM (2013) Remote sensing of chlorophyll-a as ameasure of cyanobacterial biomass in Lake Bogoria, a hypertrophic,saline-alkaline, flamingo lake, using Landsat ETM+. Remote Sens Environ 135:92–106.  https://doi.org/10.1016/j.rse.2013.03.024
  22. Vega FA, Ramirez FG, Saiz MP, Rosua FO (2015) Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosyst Eng 132:19–27.  https://doi.org/10.1016/j.biosystemseng.2015.01.008 CrossRefGoogle Scholar
  23. Zaman B, Jensen A, Clemens SR, McKee M (2014) Retrieval of spectral reflectance of high resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle. Aggie Air Photogram Eng Remote Sens 80:1139–1150.  https://doi.org/10.14358/PERS.80.12.1139 CrossRefGoogle Scholar
  24. Zang W, Lin J, Wang Y, Tao H (2012) Investigating small-scale water pollution with UAV remote sensing technology. In World Automation Congress (WAC) Institute of Electrical and Electronics Engineers (IEEE) Puerto Vallarta, Mexico 1–4Google Scholar
  25. Zhao D, Cai Y, Jiang H, Xu D, Zhang W, An S (2011) Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Water Res 34:165–173.e.  https://doi.org/10.1016/j.advwatres.2010.08.010 CrossRefGoogle Scholar
  26. Zhengjun W, Jianming H, Guisen D (2008) Use of satellite imagery to assess the trophic state of Miyun reservoir, Beijing, China. Environ Pollut 155:13–19.  https://doi.org/10.1016/j.envpol.2007.11.003

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environmental ScienceHankuk University of Foreign StudiesYonginSouth Korea
  2. 2.Computer SciencesHankuk University of Foreign StudiesYonginSouth Korea

Personalised recommendations