Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 342–361 | Cite as

Evaluating polar pesticide pollution with a combined approach: a survey of agricultural practices and POCIS passive samplers in a Tunisian lagoon watershed

  • Takoua MhadhbiEmail author
  • Olivier Pringault
  • Habiba Nouri
  • Sylvie Spinelli
  • Hamouda Beyrem
  • Catherine Gonzalez
Research Article
  • 61 Downloads

Abstract

A study of pesticides in the Bizerte lagoon watershed on the Mediterranean coast of Tunisia showed that herbicides and fungicides are the most commonly used compounds. A survey was made of selected farmers. Pesticide contamination was monitored in the water column and sediments at four selected sampling sites (lagoon (A) and in three oueds—Chegui (B), Garaa (C), and Tinja (D)). Polar organic chemical integrative samplers (POCIS) were used to assess pesticide contamination. Thirty-two pesticides were investigated; the total concentration of active ingredients ranged from 35.9 ng L−1 in Tinja oued to 1246 ng L−1 in Chegui oued. In the lagoon, the total concentration of pesticides was 67.7 ng L−1. In the sediments, the highest concentration was measured in Chegui oued in the spring (31 ng g−1 dw). The main compounds found in the analyzed sediments were prosulfocarb and tebuconazole molecules.

Keywords

Agriculture Tunisian lagoon Pesticides POCIS Sediments 

Notes

Acknowledgements

This study was financed by LMI Cosy-MED (IRD), Institut Mines Télécom Mines Alès, and the Tunisian Ministry of Higher Education and Scientific Research (Carthage University), The authors would like to thank the Tunisian farmers and fishermen of Bizerte for their kind assistance in the monitoring studies.

Supplementary material

11356_2018_3552_MOESM1_ESM.doc (66 kb)
ESM 1 (DOC 65 kb)

References

  1. Ackermann F (2008) A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environ Technol Lett 1(11):518–527Google Scholar
  2. Ahrens L, Daneshvar A, Lau AE, Kreuger J (2015) Characterization of five passive sampling devices for monitoring of pesticides in water. J Chromatogr A 1405:1–11.  https://doi.org/10.1016/j.chroma.2015.05.044 CrossRefGoogle Scholar
  3. Arellano-Aguilar O, Betancourt-Lozano M, Aguilar-Zárate G, Ponce de Leon-Hill C (2017) Agrochemical loading in drains and rivers and its connection with pollution in coastal lagoons of the Mexican Pacific. Environ Monit Assess 189:189–270.  https://doi.org/10.1007/s10661-017-5981-8 CrossRefGoogle Scholar
  4. Barhoumi B (2014) Biosurveillance de la pollution de la lagune de Bizerte (Tunisie) par l’analyse comparée des niveaux de contamination et de l’écotoxicité des sédiments et du biote (Doctoral dissertation, Bordeaux)Google Scholar
  5. Barhoumi B, LeMenach K, Dévier MH, el megdiche Y, Hammami B, Ameur WB, Hassine SB, Cachot J, Budzinski H, Driss MR (2013) Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environ Sci Pollut Res 21:6290–6302.  https://doi.org/10.1007/s11356-013-1709-7 CrossRefGoogle Scholar
  6. Barhoumi B, Lemenach K, Devier MH et al (2014) Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Bizerte lagoon, Tunisia: levels, sources, and toxicological significance. Environ Monit Assess 186:2653–2669.  https://doi.org/10.1007/s10661-013-3569-5 CrossRefGoogle Scholar
  7. Barhoumi B, El Megdiche Y, Clérandeau C et al (2016) Occurrence of polycyclic aromatic hydrocarbons (PAHs) in mussel (Mytilus galloprovincialis) and eel (Anguilla anguilla) from Bizerte lagoon, Tunisia, and associated human health risk assessment. Cont Shelf Res 124:104–116.  https://doi.org/10.1016/j.csr.2016.05.012 CrossRefGoogle Scholar
  8. Béjaoui B, Harzallah A, Moussa M, Chapelle A, Solidoro C (2008) Analysis of hydrobiological pattern in the Bizerte lagoon (Tunisia). Estuar Coast Shelf Sci 80:121–129.  https://doi.org/10.1016/j.ecss.2008.07.011 CrossRefGoogle Scholar
  9. Ben Othman A, Belkilani K, Besbes M (2018) Global solar radiation on tilted surfaces in Tunisia: measurement, estimation and gained energy assessments. Energy Reports 4:101–109.  https://doi.org/10.1016/j.egyr.2017.10.003 CrossRefGoogle Scholar
  10. Ben Said O, Goñi-Urriza M, El Bour M, Aissa P, Duran R (2010) Bacterial community structure of sediments of the Bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon. Microb Ecol 59:445–456CrossRefGoogle Scholar
  11. Board-ESF M (2011) A draft marine research plan for the European atlantic sea basin: discussion documentGoogle Scholar
  12. Bondarenko S, Gan J, Haver DL, Kabashima JN (2004) Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environ Toxicol Chem 23:2649–2654.  https://doi.org/10.1897/03-436 CrossRefGoogle Scholar
  13. Boonyatumanond R, Jaksakul A, Puncharoen P, Tabucanon MS (2002) Monitoring of organochlorine pesticides residues in green mussels (Perna viridis) from the coastal area of Thailand. Environ Pollut 119:245–252.  https://doi.org/10.1016/S0269-7491(01)00329-3 CrossRefGoogle Scholar
  14. Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77:133–139.  https://doi.org/10.1016/j.chemosphere.2009.05.008 CrossRefGoogle Scholar
  15. Branchet P, Cadot E, Fenet H, Sebag D, Ngatcha BN, Borrell-Estupina V, Ngoupayou JRN, Kengne I, Braun JJ, Gonzalez C (2018) Polar pesticide contamination of an urban and peri-urban tropical watershed affected by agricultural activities (Yaoundé, center region, Cameroon). Environ Sci Pollut Res 25:17690–17715.  https://doi.org/10.1007/s11356-018-1798-4 CrossRefGoogle Scholar
  16. Čadková E, Komárek M, Kaliszová R, Vaněk A, Balíková M (2013) Tebuconazole sorption in contrasting soil types. Soil Sediment Contam 22:404–414.  https://doi.org/10.1080/15320383.2013.733448 CrossRefGoogle Scholar
  17. Carafa R, Wollgast J, Canuti E, Ligthart J, Dueri S, Hanke G, Eisenreich SJ, Viaroli P, Zaldívar JM (2007) Seasonal variations of selected herbicides and related metabolites in water, sediment, seaweed and clams in the Sacca di Goro coastal lagoon (northern Adriatic). Chemosphere 69:1625–1637.  https://doi.org/10.1016/j.chemosphere.2007.05.060 CrossRefGoogle Scholar
  18. Carazo-Rojas E, Pérez-Rojas G, Pérez-Villanueva M, Chinchilla-Soto C, Chin-Pampillo JS, Aguilar-Mora P, Alpízar-Marín M, Masís-Mora M, Rodríguez-Rodríguez CE, Vryzas Z (2018) Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ Pollut 241:800–809.  https://doi.org/10.1016/j.envpol.2018.06.020 CrossRefGoogle Scholar
  19. Carro N, Cobas J, García I, Ignacio M, Mouteira A (2014) Distribution and trend of organochlorine pesticides in Galicia coast using mussels as bioindicator organisms. Possible relationship to biological parameters. Chemosphere 102:37–47.  https://doi.org/10.1016/j.chemosphere.2013.12.010 CrossRefGoogle Scholar
  20. Carvalho FP, Villeneuve JP, Cattini C, Rendón J, Mota de Oliveira J (2009) Pesticide and PCB residues in the aquatic ecosystems of Laguna de Terminos, a protected area of the coast of Campeche, Mexico. Chemosphere 74:988–995.  https://doi.org/10.1016/j.chemosphere.2008.09.092 CrossRefGoogle Scholar
  21. Chamberlain K, Evans AA, Bromilow RH (1996) 1-Octanol/water partition coefficient (Kow) and pKa for ionisable pesticides measured by a pH-metric method. Pestic Sci 47:265–271.  https://doi.org/10.1002/(SICI)1096-9063(199607)47:3<265::AID-PS416>3.0.CO;2-F CrossRefGoogle Scholar
  22. Charlestra L, Amirbahman A, Courtemanch DL, Alvarez DA, Patterson H (2012) Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions. Environ Pollut 169:98–104.  https://doi.org/10.1016/j.envpol.2012.05.001 CrossRefGoogle Scholar
  23. Chelbi M, Gagnon Y, Waewsak J (2015) Solar radiation mapping using sunshine duration-based models and interpolation techniques: application to Tunisia. Energy Convers Manag 101:203–215.  https://doi.org/10.1016/j.enconman.2015.04.052 CrossRefGoogle Scholar
  24. Comoretto L, Chiron S (2005) Comparing pharmaceutical and pesticide loads into a small Mediterranean river. Sci Total Environ 349:201–210.  https://doi.org/10.1016/j.scitotenv.2005.01.036 CrossRefGoogle Scholar
  25. Criquet J, Dumoulin D, Howsam M, Mondamert L, Goossens JF, Prygiel J, Billon G (2017) Comparison of POCIS passive samplers vs. composite water sampling: a case study. Sci Total Environ 609:982–991.  https://doi.org/10.1016/j.scitotenv.2017.07.227 CrossRefGoogle Scholar
  26. Cruzeiro C, Pardal MÂ, Rocha E, Rocha MJ (2015) Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon, Portugal.  https://doi.org/10.1007/s10661-015-4824-8
  27. Cruzeiro C, Rocha E, Ângelo M, João M (2016) Environmental assessment of pesticides in the Mondego River Estuary (Portugal).  https://doi.org/10.1016/j.marpolbul.2015.12.013
  28. De Gerónimo E, Aparicio VC, Bárbaro S et al (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431.  https://doi.org/10.1016/j.chemosphere.2014.01.039 CrossRefGoogle Scholar
  29. Desgranges N (2015) Développement d’échantillonneurs passifs de type POCIS pour l’évaluation de la contamination en pesticides des eaux de bassins versants languedociens. Université de BordeauxGoogle Scholar
  30. DGEDA (2006) Enquête sur les Structures des Exploitations Agricoles 2005. MARHGoogle Scholar
  31. DIRECTIVE 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the CouncilGoogle Scholar
  32. Eriksson M, Sodersten E, Yu Z et al (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Society 69:275–284.  https://doi.org/10.1128/AEM.69.1.275 CrossRefGoogle Scholar
  33. EU (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policyGoogle Scholar
  34. FAO (2105) Mediterranean coastal lagoons: sustainable management and interactions among aquaculture, capture fisheries and the environment. General fisheries commission for the Mediterranean, RomeGoogle Scholar
  35. Gao JP, Maguhn J, Spitzauer P, Kettrup A (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Water Res 32:1662–1672.  https://doi.org/10.1016/S0043-1354(97)00377-1 CrossRefGoogle Scholar
  36. Gonzalez-Rey M, Tapie N, Le Menach K et al (2015) Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Mar Pollut Bull 96:384–400.  https://doi.org/10.1016/j.marpolbul.2015.04.029 CrossRefGoogle Scholar
  37. Greenwood R, Mills G, Vrana B (2007) Passive sampling techniques in environmental monitoring. Elsevier, Amsterdam; OxfordGoogle Scholar
  38. Guo W, Zhang H, Huo S (2014) Organochlorine pesticides in aquatic hydrophyte tissues and surrounding sediments in Baiyangdian wetland, China. Ecol Eng 67:150–155.  https://doi.org/10.1016/j.ecoleng.2014.03.047 CrossRefGoogle Scholar
  39. Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, Katayama A, Kurihara N, Linders J, Unsworth J, Wong SS (2003) Regulatory limits for pesticide residues in water (IUPAC technical report). Pure Appl Chem 75:1123–1155.  https://doi.org/10.1351/pac200375081123 CrossRefGoogle Scholar
  40. Herceg-Romanić S, Kljaković-Gašpic Z, Klinčić D, Ujević I (2014) Distribution of persistent organic pollutants (POPs) in cultured mussels from the Croatian coast of the Adriatic Sea. Chemosphere 114:69–75.  https://doi.org/10.1016/j.chemosphere.2014.04.017 CrossRefGoogle Scholar
  41. Hijosa-Valsero M, Bécares E, Fernández-Aláez C, Fernández-Aláez M, Mayo R, Jiménez JJ (2016) Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Sci Total Environ 544:797–810.  https://doi.org/10.1016/j.scitotenv.2015.11.160 CrossRefGoogle Scholar
  42. Ibrahim I (2013) Etude de l’applicabilité des échantillonneurs passifs POCIS et Chemcatcher pour le suivi des pesticides en milieux aquatiquesGoogle Scholar
  43. Ibrahim I, Togola A, Gonzalez C (2013a) Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res 20:3679–3687.  https://doi.org/10.1007/s11356-012-1284-3 CrossRefGoogle Scholar
  44. Ibrahim I, Togola A, Gonzalez C (2013b) In-situ calibration of POCIS for the sampling of polar pesticides and metabolites in surface water. Talanta 116:495–500.  https://doi.org/10.1016/j.talanta.2013.07.028 CrossRefGoogle Scholar
  45. INERIS (2011) Normes de qualité environnementale du Tébuconazole n° CAS : 107534-96-3Google Scholar
  46. INERIS (2013) Norme de qualité environnementale du Prosulfocarbe n° CAS: 52888-80-9Google Scholar
  47. Jiménez JJ, Bernal JL, Rivera JM, Martin MT, Fernández M, Fernández C (1999) Seasonal changes in the contents of widely used pesticides in waters and sediments from small lakes in the province of Leon (Spain). Toxicol Environ Chem 70:57–66.  https://doi.org/10.1080/02772249909358739 CrossRefGoogle Scholar
  48. Kaushik A, Sharma HR, Jain S, Dawra J, Kaushik CP (2010) Pesticide pollution of river Ghaggar in Haryana, India. Environ Monit Assess 160:61–69.  https://doi.org/10.1007/s10661-008-0657-z CrossRefGoogle Scholar
  49. Khaled A, El Nemr A, Said TO et al (2004) Polychlorinated biphenyls and chlorinated pesticides in mussels from the Egyptian Red Sea coast. Chemosphere 54:1407–1412.  https://doi.org/10.1016/j.chemosphere.2003.10.042 CrossRefGoogle Scholar
  50. Li Y, Niu J, Shen Z, Zhang C, Wang Z, He T (2014) Spatial and seasonal distribution of organochlorine pesticides in the sediments of the Yangtze estuary. Chemosphere 114:233–240.  https://doi.org/10.1016/j.chemosphere.2014.04.112 CrossRefGoogle Scholar
  51. Liess M, Schulz R, Liess MHD, Rother B, Kreuzig R (1999) Determination of insecticide contamination in agricultural headwater streams. Water Res 33:239–247.  https://doi.org/10.1016/S0043-1354(98)00174-2 CrossRefGoogle Scholar
  52. Lissalde S, Mazzella N, Fauvelle V, Delmas F, Mazellier P, Legube B (2011) Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J Chromatogr A 1218:1492–1502.  https://doi.org/10.1016/j.chroma.2011.01.040 CrossRefGoogle Scholar
  53. Lissalde S, Mazzella N, Mazellier P (2014) Polar organic chemical integrative samplers for pesticides monitoring: impacts of field exposure conditions. Sci Total Environ 488–489:188–196.  https://doi.org/10.1016/j.scitotenv.2014.04.069 CrossRefGoogle Scholar
  54. Macdonald RW, Harner T, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 342:5–86.  https://doi.org/10.1016/j.scitotenv.2004.12.059 CrossRefGoogle Scholar
  55. Mai B, Chen S, Luo X, Chen L, Yang Q, Sheng G, Peng P, Fu J, Zeng EY (2005) Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environ Sci Technol 39:3521–3527.  https://doi.org/10.1021/es048083x CrossRefGoogle Scholar
  56. Martínez Bueno MJ, Herrera S, Munaron D, Boillot C, Fenet H, Chiron S, Gómez E (2014) POCIS passive samplers as a monitoring tool for pharmaceutical residues and their transformation products in marine environment. Environ Sci Pollut Res 23:5019–5029.  https://doi.org/10.1007/s11356-014-3796-5 CrossRefGoogle Scholar
  57. Meakins NC, Bubb JM, Lester JN (1995) The mobility, partitioning and degradation of atrazine and simazine in the salt marsh environment. Mar Pollut Bull 30:812–819.  https://doi.org/10.1016/0025-326X(95)00074-W CrossRefGoogle Scholar
  58. Mezghani et al (2016) Liste des pesticides Homologués en Tunisie. https://www.neppo.org/wp-content/uploads/2017/08/liste-des-pesticides-homologues-2016.pdf
  59. Miège C, Budzinski H, Jacquet R, Soulier C, Pelte T, Coquery M (2013) Polar organic chemical integrative sampler (POCIS): application for monitoring organic micropollutants in wastewater effluent and surface water. J Environ Monit 14:626–635.  https://doi.org/10.1039/c1em10730e CrossRefGoogle Scholar
  60. Miège C, Mazzella N, Allan I, Dulio V, Smedes F, Tixier C, Vermeirssen E, Brant J, O’Toole S, Budzinski H, Ghestem JP, Staub PF, Lardy-Fontan S, Gonzalez JL, Coquery M, Vrana B (2015) Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment—achievements to date and perspectives. Trends Environ Anal Chem 8:20–26.  https://doi.org/10.1016/j.teac.2015.07.001 CrossRefGoogle Scholar
  61. Momplaisir GM, Rosal CG, Heithmar EM, Varner KE, Riddick LA, Bradford DF, Tallent-Halsell NG (2010) Development of a solid phase extraction method for agricultural pesticides in large-volume water samples. Talanta 81:1380–1386.  https://doi.org/10.1016/j.talanta.2010.02.038 CrossRefGoogle Scholar
  62. Moncada A (2004) Environmental fate of Diuron. Environmental Monitoring Branch Department of Pesticide Regulation 1001 I Street Sacramento, CA 95812-4015  Google Scholar
  63. Moreno-González R, León VM (2017) Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). Environ Sci Pollut Res 24:8033–8048.  https://doi.org/10.1007/s11356-017-8456-0 CrossRefGoogle Scholar
  64. Mzoughi N, Hellal F, Dachraoui M, Villeneuve JP, Cattini C, de Mora SJ, el Abed A (2002) Méthodologie de l’extraction des hydrocarbures aromatiques polycycliques. Application à des sédiments de la lagune de Bizerte (Tunisie). Compt Rendus Geosci 334:893–901.  https://doi.org/10.1016/S1631-0713(02)01827-8 CrossRefGoogle Scholar
  65. Mzoughi N, Lespes G, Bravo M, Dachraoui M, Potin-Gautier M (2005) Organotin speciation in Bizerte lagoon (Tunisia). Sci Total Environ 349:211–222.  https://doi.org/10.1016/j.scitotenv.2004.12.067 CrossRefGoogle Scholar
  66. Navarro S, Vela N, José Giménez M, Navarro G (2004) Effect of temperature on the disappearance of four triazine herbicides in environmental waters. Chemosphere 57:51–59.  https://doi.org/10.1016/j.chemosphere.2004.05.016 CrossRefGoogle Scholar
  67. Necibi M, Mzoughi N, Néjib Daly Yahia M, Pringault O (2015) Distributions of organochlorine pesticides and polychlorinated biphenyl in surface water from Bizerte lagoon, Tunisia. Desalin Water Treat 56:2663–2671.  https://doi.org/10.1080/19443994.2015.1024935 CrossRefGoogle Scholar
  68. Nefzaoui A, Ketata H, El-Mourid M (2012) Changes in North Africa production systems to meet climate uncertainty and new socio-economic scenarios with a focus on dryland areas. Options Méditerranéennes : Série A. Séminaires Méditerranéens 421:403–421Google Scholar
  69. Ouertani N, Hamouda R, Belayouni H (2006) Etude de la matière organique dans les sèdiments superficiels d’un système aquatique confinè anoxique èvoluant en milieu urbain: Cas du Lac sud de Tunis. Geo Eco Trop 30:21–34Google Scholar
  70. Palma P, Köck-Schulmeyer M, Alvarenga P, Ledo L, Barbosa IR, López de Alda M, Barceló D (2014) Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Sci Total Environ 488–489:208–219.  https://doi.org/10.1016/j.scitotenv.2014.04.088 CrossRefGoogle Scholar
  71. Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Makris KC, Papadopoulou-Mourkidou E (2015) Ecotoxicology and environmental safety a pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol Environ Saf 116:1–9.  https://doi.org/10.1016/j.ecoenv.2015.02.033 CrossRefGoogle Scholar
  72. PAPP R (2010) Les propriétés environnementales des substances Rév-Roger Rapp CNEEIC- Collège National d’Experts en Environnement de l’Industrie ChimiqueGoogle Scholar
  73. Poulier G, Lissalde S, Charriau A, Buzier R, Delmas F, Gery K, Moreira A, Guibaud G, Mazzella N (2014) Can POCIS be used in water framework directive (2000/60/EC) monitoring networks? A study focusing on pesticides in a French agricultural watershed. Sci Total Environ 497–498:282–292.  https://doi.org/10.1016/j.scitotenv.2014.08.001 CrossRefGoogle Scholar
  74. Poulier G, Lissalde S, Charriau A, Buzier R, Cleries K, Delmas F, Mazzella N, Guibaud G (2015) Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy. Environ Sci Pollut Res 22:8044–8057.  https://doi.org/10.1007/s11356-014-2814-y CrossRefGoogle Scholar
  75. Ralston-Hooper K, Hardy J, Hahn L, Ochoa-Acuña H, Lee LS, Mollenhauer R, Sepúlveda MS (2009) Acute and chronic toxicity of atrazine and its metabolites deethylatrazine and deisopropylatrazine on aquatic organisms. Ecotoxicology 18:899–905.  https://doi.org/10.1007/s10646-009-0351-0 CrossRefGoogle Scholar
  76. Salem FB (2017) First survey of agricultural pesticides used for crops in Ichkeul Lake–Bizerte lagoon watershed (Tunisia). Environ Sci Ind J 13:1–10Google Scholar
  77. Salem FB, Said OB, Aissa P et al (2016) Pesticides in Ichkeul Lake–Bizerta lagoon watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environ Sci Pollut Res 23:36–48.  https://doi.org/10.1007/s11356-015-4991-8 CrossRefGoogle Scholar
  78. Savinov V (2000) Polycyclic aromatic hydrocarbons (PAHs) in sediments of the White Sea, Russia. Mar Pollut Bull 40:807–818.  https://doi.org/10.1016/S0025-326X(00)00004-7 CrossRefGoogle Scholar
  79. Terzopoulou E, Voutsa D (2016) Active and passive sampling for the assessment of hydrophilic organic contaminants in a river basin-ecotoxicological risk assessment. Environ Sci Pollut Res 23:5577–5591.  https://doi.org/10.1007/s11356-015-5760-4 CrossRefGoogle Scholar
  80. UNEP (2001) Stockholm Convention on Persistent Organic Pollutants (POPs)Google Scholar
  81. Van Metre PC, Alvarez DA, Mahler BJ et al (2017) Complex mixtures of pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers. Environ Pollut 220:431–440.  https://doi.org/10.1016/j.envpol.2016.09.085 CrossRefGoogle Scholar
  82. Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43:1–10.  https://doi.org/10.1016/j.watres.2008.09.021 CrossRefGoogle Scholar
  83. Wu SC, Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20:717–725.  https://doi.org/10.1021/es00149a011 CrossRefGoogle Scholar
  84. Yabuki Y, Nagai T, Inao K, Ono J, Aiko N, Ohtsuka N, Tanaka H, Tanimori S (2016) Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS). Biosci Biotechnol Biochem 80:2069–2075.  https://doi.org/10.1080/09168451.2016.1191329 CrossRefGoogle Scholar
  85. Yohannes YB, Ikenaka Y, Saengtienchai A, Watanabe KP, Nakayama SMM, Ishizuka M (2014) Concentrations and human health risk assessment of organochlorine pesticides in edible fish species from a Rift Valley Lake—Lake Ziway, Ethiopia. Ecotoxicol Environ Saf 106:95–101.  https://doi.org/10.1016/j.ecoenv.2014.04.014 CrossRefGoogle Scholar
  86. Zaghden H, Tedetti M, Sayadi S, Serbaji MM, Elleuch B, Saliot A (2017) Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, southern Mediterranean Sea). Mar Pollut Bull 117:414–428.  https://doi.org/10.1016/j.marpolbul.2017.02.007 CrossRefGoogle Scholar
  87. Zhang J, Liu F, Chen R, Feng T, Dong S, Shen H (2012) Levels of polychlorinated biphenyls and organochlorine pesticides in edible shellfish from Xiamen (China) and estimation of human dietary intake. Food Chem Toxicol 50:4285–4291.  https://doi.org/10.1016/j.fct.2012.08.052 CrossRefGoogle Scholar
  88. Zhang Z, Troldborg M, Yates K, Osprey M, Kerr C, Hallett PD, Baggaley N, Rhind SM, Dawson JJC, Hough RL (2016) Evaluation of spot and passive sampling for monitoring, flux estimation and risk assessment of pesticides within the constraints of a typical regulatory monitoring scheme. Sci Total Environ 569–570:1369–1379.  https://doi.org/10.1016/j.scitotenv.2016.06.219 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Takoua Mhadhbi
    • 1
    • 2
    Email author
  • Olivier Pringault
    • 3
    • 4
  • Habiba Nouri
    • 4
  • Sylvie Spinelli
    • 1
  • Hamouda Beyrem
    • 2
  • Catherine Gonzalez
    • 1
  1. 1.Laboratory of Industrial Environmental Engineering (LGEI), IMT Mines AlèsUniversity of MontpellierAlesFrance
  2. 2.Laboratory of Environmental Biomonitoring (LBE), Faculty of Sciences of BizerteUniversity of CarthageAvenue de la RépubliqueTunisia
  3. 3.UMR 9190 MARBEC IRD-Ifremer-CNRSUniversity of MontpellierMontpellierFrance
  4. 4.Institut de Recherche pour le DéveloppementTunisTunisia

Personalised recommendations