Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36207–36222 | Cite as

Variations of anthropogenic gadolinium in rivers close to waste water treatment plant discharges

  • Marc Parant
  • Emilie Perrat
  • Philippe Wagner
  • Christophe Rosin
  • Jean-Sebastien Py
  • Carole Cossu-Leguille
Research Article

Abstract

Rare earth element (REE) concentrations were determined for 22 sites sampled during two water periods: high flow in winter and low flow in summer. Shale-normalized REE patterns of all samples displayed positive gadolinium (Gd) anomalies. They revealed a widespread contamination of anthropogenic Gd (Gdant) from waste water treatment plant (WWTP) outputs to catchment areas used for drinking water. No significant variations in Gdant were observed between the two flow water periods, but differences in the Gd anomalies were present. However, these differences seem to be associated rather with seasonal variations in the river flow rate than with the release of GdAnt from WWTPs. In proximity to WWTP discharges, strong GdAnt variations ranged from few nanograms per litre to more than 80 μg L−1 and rarely showed a repetitive pattern day after day during 14 days. These concentrations were diluted into the river stream and measured around 10 ng L−1 close to the catchment areas used for drinking water. A principal component analysis (PCA) using the GdAnt concentrations and some classical physicochemical parameters (pH, water temperature, total alkalinity (TA), total organic carbon (TOC), biochemical and chemical oxygen demand (BOD and COD), Cl, NO3 and SO42−) allowed a site separation according to the level of Gd contamination, highlighting that the highest GdAnt concentrations were found in the north of the region Lorraine (France) where the population density is high and most of the MRI examinations are performed.

Keywords

Anthropogenic gadolinium Waste water treatment plants Rare earth elements Contrast agents 

Notes

Acknowledgements

The authors are grateful to Philippe Rousselle for his help with water sampling, and they warmly thank Kalina Doyen for her English corrections. This work has been supported by the Lorraine region and the French National Research Agency through the Investissements d’avenir national program with the reference ANR-10-LABX-21-01/LABEX RESSOURCES21 and by the CNRS-INSU coordination through the EC2CO-ECODYN program.

References

  1. EN ISO 10304-1, 2009. Qualité de l’eau - Dosage des anions dissous par chromatographie des ions en phase liquide - Partie 1: dosage du bromure, chlorure, fluorure, nitrate, nitrite, phosphate et sulfateGoogle Scholar
  2. Barber LB, Loyo-Rosales JE, Rice CP, Minarik TA, Oskouie AK (2015) Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions. Sci Total Environ 517:195–206.  https://doi.org/10.1016/j.scitotenv.2015.02.035 CrossRefGoogle Scholar
  3. Bau M, Knappe A, Dulski P (2006) Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chem. Erde - Geochem. 66:143–152.  https://doi.org/10.1016/j.chemer.2006.01.002 CrossRefGoogle Scholar
  4. Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167CrossRefGoogle Scholar
  5. Birka M, Wehe CA, Hachmöller O, Sperling M, Karst U (2016) Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis. J Chromatogr A 1440:105–111.  https://doi.org/10.1016/j.chroma.2016.02.050 CrossRefGoogle Scholar
  6. Courant T (2011) Nanoparticules incorporant des complexes inorganiques à visée diagnostique. Université Reims Champagne-Ardenne, ReimsGoogle Scholar
  7. Elbaz-Poulichet F, Seidel JL, Othoniel C (2002) Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of southern France. Water Res 36:1102–1105.  https://doi.org/10.1016/S0043-1354(01)00370-0 CrossRefGoogle Scholar
  8. González V, Vignati DAL, Pons M-N, Montarges-Pelletier E, Bojic C, Giamberini L (2015) Lanthanide ecotoxicity: first attempt to measure environmental risk for aquatic organisms. Environ Pollut 199:139–147.  https://doi.org/10.1016/j.envpol.2015.01.020 CrossRefGoogle Scholar
  9. Goonan TG, Survey G (2011) Rare earth elements--end use and recyclability. U.S. Department of the Interior, US Geological SurveyGoogle Scholar
  10. Grawunder A, Merten D (2012) Rare earth elements in acidic systems – biotic and abiotic impacts. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer Berlin Heidelberg, Berlin, pp 81–97CrossRefGoogle Scholar
  11. Jiachen W, Xiangsheng L, Jun Y, He Z, Ying L, Yubin F, Yanping W, Xuewei H (2006) Development and prospect of rare earth functional biomaterials for agriculture in China. J Rare Earths 24:427–431.  https://doi.org/10.1016/S1002-0721(07)60419-0 CrossRefGoogle Scholar
  12. Johannesson KH, Zhou X, Guo C, Stetzenbach KJ, Hodge VF (2000) Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and Eastern California, USA. Chem Geol 164:239–257.  https://doi.org/10.1016/S0009-2541(99)00152-7 CrossRefGoogle Scholar
  13. Knappe A, Möller P, Dulski P, Pekdeger A (2005) Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chem Erde - Geochem 65:167–189.  https://doi.org/10.1016/j.chemer.2004.08.004 CrossRefGoogle Scholar
  14. Kulaksız S, Bau M (2011a) Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int 37:973–979.  https://doi.org/10.1016/j.envint.2011.02.018 CrossRefGoogle Scholar
  15. Kulaksız S, Bau M (2011b) Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Appl Geochem 26:1877–1885.  https://doi.org/10.1016/j.apgeochem.2011.06.011 CrossRefGoogle Scholar
  16. Kulaksız S, Bau M (2013) Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet Sci Lett 362:43–50.  https://doi.org/10.1016/j.epsl.2012.11.033 CrossRefGoogle Scholar
  17. Kümmerer K, Helmers E (2000) Hospital effluents as a source of gadolinium in the aquatic environment. Env Sci Technol 34:573–577.  https://doi.org/10.1021/es990633h CrossRefGoogle Scholar
  18. Laveuf C, Cornu S (2009) A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154:1–12.  https://doi.org/10.1016/j.geoderma.2009.10.002 CrossRefGoogle Scholar
  19. Lawrence MG, Bariel DG (2010) Tracing treated wastewater in an inland catchment using anthropogenic gadolinium. Chemosphere 80:794–799.  https://doi.org/10.1016/j.chemosphere.2010.05.001 CrossRefGoogle Scholar
  20. Lawrence MG, Ort C, Keller J (2009) Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Res 43:3534–3540.  https://doi.org/10.1016/j.watres.2009.04.033 CrossRefGoogle Scholar
  21. Merschel G, Bau M (2015) Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci Total Environ 533:91–101.  https://doi.org/10.1016/j.scitotenv.2015.06.042 CrossRefGoogle Scholar
  22. Merschel G, Bau M, Baldewein L, Dantas EL, Walde D, Bühn B (2015) Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: anthropogenic gadolinium and geogenic REEs in Lake Paranoá, Brasilia. Comptes Rendus Geosci 347:284–293.  https://doi.org/10.1016/j.crte.2015.01.004 CrossRefGoogle Scholar
  23. Migaszewski ZM, Gałuszka A (2016) The use of gadolinium and europium concentrations as contaminant tracers in the Nida River watershed in south-central Poland. Geol Q 60.  https://doi.org/10.7306/gq.1241
  24. Möller P, Paces T, Dulski P, Morteani G (2002) Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environ. Sci. Technol. 36:2387–2394.  https://doi.org/10.1021/es010235q CrossRefGoogle Scholar
  25. Neubert C (2008) Umweltverhalten und Ökotoxikologie von gadoliniumhaltigen Magnetresonanztomographie-Kontrastmitteln. doi: https://doi.org/10.14279/depositonce-1924
  26. NF EN 1484 (1997) Analyse de l’eau - Lignes directrices pour le dosage du carbone organique total (TOC) et carbone organique dissous (COD)Google Scholar
  27. NF EN 1899-1 (1998) Qualité de l’eau - Détermination de la demande biochimique en oxygène après n jours (DBOn) - Partie 1: méthode par dilution et ensemencement avec apport d’allylthio-uréeGoogle Scholar
  28. NF EN ISO 9963-1 (1996) Qualité de l’eau - Détermination de l’alcalinité - Partie 1: détermination de l’alcalinité totale et compositeGoogle Scholar
  29. NF T 90-101 (2001) Qualité de l’eau - Détermination de la demande chimique en oxygène (DCO)Google Scholar
  30. Nozaki Y, Lerche D, Alibo DS, Tsutsumi M (2000) Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and In. Geochim Cosmochim Acta 64:3975–3982.  https://doi.org/10.1016/S0016-7037(00)00472-5 CrossRefGoogle Scholar
  31. ONEMA-INERIS, Staub, P.F., Dulio, V., Morin, A. (2009) LES SUBSTANCES EMERGENTES DANS L’ENVIRONNEMENT Note de synthèse sur l’état de l’art concernant les produits pharmaceutiques, les cosmétiques et les produits d’hygiène corporelle (Convention de partenariat ONEMA-INERIS 2008 No. DRC-09-95687-06381C)Google Scholar
  32. Perrat E, Parant M, Py J-S, Rosin C, Cossu-Leguille C (2017) Bioaccumulation of gadolinium in freshwater bivalves. Environ Sci Pollut Res 24:12405–12415.  https://doi.org/10.1007/s11356-017-8869-9 CrossRefGoogle Scholar
  33. Py JS, Garnier A, Vo Van Regnault G, Munoz JF (2011) Occurrence du gadolinium anthropique dans les eaux destinées à la consommation humaine. Cachiers Réf 5:26–29Google Scholar
  34. Rabiet M (2006) Contamination de la ressource en eau par les eaux usées dans un bassin versant Méditerranéen - Apport des éléments majeurs, traces et terres rares. Université Montpellier II, MontpellierGoogle Scholar
  35. Raju CSK, Cossmer A, Scharf H, Panne U, Lück D (2010) Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. J Anal Spectrom 25:55–61.  https://doi.org/10.1039/B919959D CrossRefGoogle Scholar
  36. Reinstorf F, Strauch G, Schirmer K, Gläser HR, Möder M, Wennrich R, Osenbrück K, Schirmer M (2008) Mass fluxes and spatial trends of xenobiotics in the waters of the city of Halle, Germany. Environ Pollut 152:452–460.  https://doi.org/10.1016/j.envpol.2007.05.033 CrossRefGoogle Scholar
  37. Strauch G, Möder M, Wennrich R, Osenbrück K, Gläser H-R, Schladitz T, Müller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soils Sediments 8:23–33.  https://doi.org/10.1065/jss2007.06.234 CrossRefGoogle Scholar
  38. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. 312 pp. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific., Geol MagGoogle Scholar
  39. Telgmann L, Faber H, Jahn S, Melles D, Simon H, Sperling M, Karst U (2012a) Identification and quantification of potential metabolites of Gd-based contrast agents by electrochemistry/separations/mass spectrometry. J Chromatogr A 1240:147–155.  https://doi.org/10.1016/j.chroma.2012.03.088 CrossRefGoogle Scholar
  40. Telgmann L, Wehe CA, Birka M, Künnemeyer J, Nowak S, Sperling M, Karst U (2012b) Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environ. Sci. Technol. 46:11929–11936.  https://doi.org/10.1021/es301981z CrossRefGoogle Scholar
  41. Telgmann L, Sperling M, Karst U (2013) Determination of gadolinium-based MRI contrast agents in biological and environmental samples: a review. Anal Chem Acta 764:1–16.  https://doi.org/10.1016/j.aca.2012b.12.007 CrossRefGoogle Scholar
  42. Tepe N, Romero M, Bau M (2014) High-technology metals as emerging contaminants: Strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012. Appl Geochem 45:191–197.  https://doi.org/10.1016/j.apgeochem.2014.04.006 CrossRefGoogle Scholar
  43. Verplanck PL, Furlong ET, Gray JL, Phillips PJ, Wolf RE, Esposito K (2010) Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants. Environ Sci Technol 44:3876–3882.  https://doi.org/10.1021/es903888t CrossRefGoogle Scholar
  44. Zhu Y, Hoshino M, Yamada H, Itoh A, Haraguchi H (2004) Gadolinium anomaly in the distributions of rare earth elements observed for coastal seawater and river waters around Nagoya city. Bull Chem Soc Jpn 77:1835–1842.  https://doi.org/10.1246/bcsj.77.1835 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC UMR 7360, Bât P7Université de LorraineMetzFrance
  2. 2.Laboratoire d’Hydrologie de NancyAgence Nationale de Sécurité Sanitaire Alimentation - Environnement – TravailNancyFrance
  3. 3.Agence Nationale de Sécurité Sanitaire Alimentation - Environnement – TravailNancyFrance

Personalised recommendations