Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 617–627 | Cite as

Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors

  • Cong Fan
  • Chuling Guo
  • Meiqin Chen
  • Weilin Huang
  • Jingjing Wan
  • John.R. Reinfelder
  • Xiaofei Li
  • Yufei Zeng
  • Guining Lu
  • Zhi Dang
Research Article
  • 89 Downloads

Abstract

Schwertmannite is an important sink for cadmium (Cd) in acid mine drainage (AMD) environments and is unstable when environmental conditions change. However, the release and redistribution of Cd during schwertmannite transformation with respect to pre-bound Cd are poorly understood. In this work, the transformation of cadmium-associated schwertmannite and subsequent Cd repartitioning behaviors were investigated. The way of schwertmannite associated with Cd was predominant by absorption, and the diffuse layer model (DLM) showed that Cd2+ existed as monodentate complexes ≡Fe(1)OCd+ and ≡Fe(2)OCd+ on schwertmannite surfaces. Kinetics of SO42− release and mineralogical characterization both showed that the mineral transformation rates decreased and more lepidocrocite aggregated with increasing adsorbed Cd levels. The shrinking core model revealed that Fe(II)-induced process would affect mineral dissolution by changing surface reaction-controlled step to internal diffusion-controlled step, and significantly promote the dissolution rate of Cd-adsorbed schwertmannite. Adsorbed Cd blocked the surface sites for later Fe(II) adsorption and the Fe(II)-Fe(III) electron transfer, then resulted in the decelerated transformation and the accumulation of intermediate phase lepidocrocite. The maximum release of aqueous Cd occurred after 1 mM Fe2+ addition, then over 69% of initial added Cd(aq) re-bound to solid-phase accompanying with mineral transformation, and finally, Cd was mainly associated with the secondary minerals by complexation with surficial OH groups. These findings are useful for developing the strategies for treating Cd contamination in AMD affected areas.

Keywords

Acid mine drainage Schwertmannite Cadmium Transformation Sulfate release kinetics Cd redistribution 

Notes

Funding information

This study was financially supported by the National Natural Science Foundation of China (Nos. 41330639 and 41720104004), the National Key Technology Support Program (No. 2015BAD05B05), and the Science and Technology Planning Project of Guangdong Province (No. 2016B020242004).

Supplementary material

11356_2018_3441_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1.12 mb)

References

  1. Acero P, Ayora C, Torrentó C, Nieto J-M (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139CrossRefGoogle Scholar
  2. Antelo J, Fiol S, Gondar D, Pérez C, López R, Arce F (2013) Cu(II) incorporation to schwertmannite: effect on stability and reactivity under AMD conditions. Geochim Cosmochim Acta 119:149–163CrossRefGoogle Scholar
  3. Arenas-lago D, Vega FA, Silva LFO, Andrade ML (2013) Soil interaction and fractionation of added cadmium in some galician soils. Microchem J 110:681–690CrossRefGoogle Scholar
  4. Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z (2018) Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Sci Total Environ 616-617:647–657CrossRefGoogle Scholar
  5. Bigham J, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe (II) in acid mine waters. Geochim Cosmochim Acta 54:2743–2758CrossRefGoogle Scholar
  6. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121CrossRefGoogle Scholar
  7. Burgos WD, Borch T, Troyer LD, Luan F, Larson LN, Brown JF, Lambson J, Shimizu M (2012) Schwertmannite and Fe oxides formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: impact on trace metal sequestration. Geochim Cosmochim Acta 76:29–44CrossRefGoogle Scholar
  8. Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2007) Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands. Geochim Cosmochim Acta 71:4456–4473CrossRefGoogle Scholar
  9. Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron–sulfide formation. Geochim Cosmochim Acta 72:4551–4564CrossRefGoogle Scholar
  10. Burton ED, Johnston SG, Watling K, Bush RT, Keene AF, Sullivan LA (2010) Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Environ Sci Technol 44:2016–2021CrossRefGoogle Scholar
  11. Caraballo MA, Macías F, Rötting TS, Nieto JM, Ayora C (2011) Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin. Environ Pollut 159:3613–3619CrossRefGoogle Scholar
  12. Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of as from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719CrossRefGoogle Scholar
  13. Chen M, Lu G, Guo C, Yang C, Wu J, Huang W, Yee N, Dang Z (2015) Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere 119:734–743CrossRefGoogle Scholar
  14. Civeira MS, Ramos CG, Oliveira MLS, Kautzmann RM, Taffarel SR, Teixeira EC, Silva LFO (2016) Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145:142–147CrossRefGoogle Scholar
  15. Collins CR, Ragnarsdottir KV, Sherman DM (1999) Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite. Geochim Cosmochim Acta 63:2989–3002CrossRefGoogle Scholar
  16. Cornell RM, Schwertmann U (1996) The iron oxides. VCH Verlagsgesellschaft. Weinheim, New YorkGoogle Scholar
  17. Cutting RS, Coker VS, Telling ND, Kimber RL, van der Laan G, Pattrick RA, Vaughan DJ, Arenholz E, Lloyd JR (2012) Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Environ Sci Technol 46:12591–12599CrossRefGoogle Scholar
  18. Dinis MD and Fiuza A (2010) Exposure assessment to heavy matals in the environment:measures to eliminate or reduce the exposure to critical receptors, in: Simeonov, L.I., Kochubovski, M.V., Simeonova, B.G. (Eds.), Environmental heavy metal pollution and effects on child mental development: risk assessment and prevention strategies, pp. 27–50Google Scholar
  19. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. John Wiley&Sons, New YorkGoogle Scholar
  20. Eskandarpour A, Onyango MS, Ochieng A, Asai S (2008) Removal of fluoride ions from aqueous solution at low pH using schwertmannite. J Hazard Mater 152:571–579CrossRefGoogle Scholar
  21. Fan L, Zhang X (2017) Adsorption and desorption of cadmium on synthetic schwertmannite. Desalin Water Treat 79:243–250CrossRefGoogle Scholar
  22. Fdez-Ortiz de Vallejuelo S, Gredilla A, da Boit K, Teixeira EC, Sampaio CH, Madariaga JM, Silva LFO (2017) Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment. Chemosphere 169:725–733CrossRefGoogle Scholar
  23. Ferrier RJ, Cai L, Lin Q, Gorman GJ, Neethling SJ (2016) Models for apparent reaction kinetics in heap leaching: a new semi-empirical approach and its comparison to shrinking core and other particle-scale models. Hydrometallurgy 166:22–33CrossRefGoogle Scholar
  24. Frierdich AJ, Catalano JG (2012) Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides. Environ Sci Technol 46:11070–11077CrossRefGoogle Scholar
  25. Gagliano WB, Brill MR, Bigham JM, Jones FS, Traina SJ (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta 68:2119–2128CrossRefGoogle Scholar
  26. Gorski CA, Handler RM, Beard BL, Pasakarnis T, Johnson CM, Scherer MM (2012) Fe atom exchange between aqueous Fe2+ and magnetite. Environ Sci Technol 46:12399–12407CrossRefGoogle Scholar
  27. Hansel CM, Learman DR, Lentini CJ, Ekstrom EB (2011) Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite. Geochim Cosmochim Acta 75:4653–4666CrossRefGoogle Scholar
  28. Hayes KF, Leckie JO (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 115:564–572CrossRefGoogle Scholar
  29. Ishikawa T, Minamigawa M, Kandori K, Nakayama T, Tsubota T (2004) Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH. J Electrochem Soc 151:B512CrossRefGoogle Scholar
  30. Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191CrossRefGoogle Scholar
  31. Johnston SG, Burton ED, Keene AF, Planer-Friedrich B, Voegelin A, Blackford MG, Lumpkin GR (2012) Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite. Chem Geol 334:9–24CrossRefGoogle Scholar
  32. Knorr K-H, Blodau C (2007) Controls on schwertmannite transformation rates and products. Appl Geochem 22:2006–2015CrossRefGoogle Scholar
  33. Kumpulainen S, Raisanen ML, Von Der Kammer F, Hofmann T (2008) Ageing of synthetic and natural schwertmannites at pH 2-8. Clay Miner 43:437–448CrossRefGoogle Scholar
  34. Lackovic K, Angove MJ, Wells JD, Johnson BB (2003) Modeling the adsorption of Cd(II) onto Muloorina illite and related clay minerals. J Colloid Interface Sci 257:31–40CrossRefGoogle Scholar
  35. Latta DE, Bachman JE, Scherer MM (2012a) Fe Electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. Environ Sci Technol 46:10614–10623CrossRefGoogle Scholar
  36. Latta DE, Gorski CA, Scherer MM (2012b) Influence of Fe2+−catalysed iron oxide recrystallization on metal cycling. Biochem Soc Trans 40:1191–1197CrossRefGoogle Scholar
  37. Liao Y, Liang J, Zhou L (2011) Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere 83:295–301CrossRefGoogle Scholar
  38. Liddell KC (2005) Shrinking core models in hydrometallurgy: what students are not being told about the pseudo-steady approximation. Hydrometallurgy 79:62–68CrossRefGoogle Scholar
  39. Liu C, Zhu Z, Li F, Liu T, Liao C, Lee J-J, Shih K, Tao L Wu Y (2016) Fe(II)-induced phase transformation of ferrihydrite: the inhibition effects and stabilization of divalent metal cations. Chem Geol 444:110–119Google Scholar
  40. Paikaray S, Peiffer S (2012) Abiotic schwertmannite transformation kinetics and the role of sorbed As(III). Appl Geochem 27:590–597CrossRefGoogle Scholar
  41. Paikaray S, Peiffer S (2015) Lepidocrocite formation kinetics from schwertmannite in Fe(II)-rich anoxic alkaline medium. Mine Water Environ 34:213–222CrossRefGoogle Scholar
  42. Paikaray S, Schröder C, Peiffer S (2017) Schwertmannite stability in anoxic Fe(II)-rich aqueous solution. Geochim Cosmochim Acta 217:292–305CrossRefGoogle Scholar
  43. Pedersen HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70:4116–4129CrossRefGoogle Scholar
  44. Pedersen HD, Postma D, Jakobsen R, Larsen O (2005) Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta 69:3967–3977CrossRefGoogle Scholar
  45. Peretyazhko T, Zachara JM, Boily JF, Xia Y, Gassman PL, Arey BW, Burgos WD (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chem Geol 262:169–178CrossRefGoogle Scholar
  46. Randall SR, Sherman DM, Ragnarsdottir KV, Collins CR (1999) The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochim Cosmochim Acta 63:2971–2987CrossRefGoogle Scholar
  47. Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239CrossRefGoogle Scholar
  48. Regenspurg S, Brand A Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta 68:1185–1197Google Scholar
  49. Schroth AW, Parnell RA (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl Geochem 20:907–917CrossRefGoogle Scholar
  50. Sun TC, Paige CR, Snodgrass WJ (1996) The effect of cadmium on the transformation of ferrihydrite into crystalline products at pH 8. Water Air Soil Pollut 91:307–325CrossRefGoogle Scholar
  51. Suter D, Siffert C, Sulzberger B, Stumm W (1988) Catalytic dissolution of Iron(III)(hydr)oxides by oxalic acid in the presence of Fe(II). Naturwissenschaften 75:571–573CrossRefGoogle Scholar
  52. Swedlund PJ, Webster JG (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16:503–511CrossRefGoogle Scholar
  53. Valente TM, Leal Gomes C (2009) Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407:1135–1152CrossRefGoogle Scholar
  54. Velardo A, Giona M, Adrover A, Pagnanelli F, Toro L (2002) Two-layer shrinking-core model parameter estimation for the reaction order in leaching processes. Chem Eng J 90:231–240CrossRefGoogle Scholar
  55. Villalobos M, Pérez-Gallegos A (2008) Goethite surface reactivity: a macroscopic investigation unifying proton, chromate, carbonate, and lead(II) adsorption. J Colloid Interface Sci 326:307–323CrossRefGoogle Scholar
  56. Wan J, Guo C, Tu Z, Zeng Y, Fan C, Lu G, Dang Z (2018) Microbial reduction of Cr (VI)-loaded schwertmannite by Shewanella oneidensis MR-1. Geomicrobiol J:1–8Google Scholar
  57. Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng C-Biomimetic Supramol Systems 26:588–592CrossRefGoogle Scholar
  58. Wang XM, Gu CH, Feng XH, Zhu MQ (2015) Sulfate local coordination environment in schwertmannite. Environ Sci Technol 49:10440–10448CrossRefGoogle Scholar
  59. Xie J, Gu X, Tong F, Zhao Y, Tan Y (2015) Surface complexation modeling of Cr(VI) adsorption at the goethite–water interface. J Colloid Interface Sci 455:55–62CrossRefGoogle Scholar
  60. Zhang S-L, Jia S-Y, Yu B, Liu Y, Wu S-H, Han X (2016) Sulfidization of as(V)-containing schwertmannite and its impact on arsenic mobilization. Chem Geol 420:270–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cong Fan
    • 1
  • Chuling Guo
    • 1
    • 2
  • Meiqin Chen
    • 3
  • Weilin Huang
    • 4
  • Jingjing Wan
    • 1
  • John.R. Reinfelder
    • 4
  • Xiaofei Li
    • 1
  • Yufei Zeng
    • 1
  • Guining Lu
    • 1
    • 2
    • 5
  • Zhi Dang
    • 1
    • 2
    • 5
  1. 1.School of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of EducationSouth China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.School of Environmental and Biological EngineeringGuangdong University of Petrochemical TechnologyMaomingPeople’s Republic of China
  4. 4.Department of Environmental SciencesRutgers, the State University of New JerseyNew BrunswickUSA
  5. 5.Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency DisposalSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations