Environmental Science and Pollution Research

, Volume 25, Issue 34, pp 34426–34437 | Cite as

Bed and suspended sediment-associated rare earth element concentrations and fluxes in a polluted Brazilian river system

  • Yuri Jacques Agra Bezerra da SilvaEmail author
  • Clístenes Williams Araújo do Nascimento
  • Ygor Jacques Agra Bezerra da Silva
  • Fábio Farias Amorim
  • José Ramon Barros Cantalice
  • Vijay P. Singh
  • Adrian L. Collins
Research Article


Rare earth elements (REEs) have been recently recognized as emergent pollutants in rivers. However, data regarding REE fluxes in association with either bed or suspended are scarce. To address this knowledge gap, we determined the concentrations and fluxes of La, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Lu, Dy, Er, Ho, Tb, and Tm in bed and suspended sediment samples of a representative polluted Brazilian River. Sediment-associated data on REEs were placed in the context of corresponding background concentrations in soils under natural conditions along the Ipojuca watershed. Light rare earth elements (LREEs) comprised more than 94% of the total REEs associated with bed and suspended sediments. Suspended sediments accounted for more than 95% of the total REE flux. The Ce and Nd fluxes of about 7 t year−1 underscore the importance of including REEs in future estimations of global suspended sediment-associated element fluxes. In contrast, bedload often transported less than 0.0007 t year−1 of each REE. The main sources of pollution in the Ipojuca River are anthropogenic, likely due to domestic effluent and waste water from industrial and agricultural operations—major causes of sediment-associated Gd transport in polluted streams.


Lanthanides Environmental quality Sediment-associated transport Watershed management Water quality Bedload 


Funding information

This research was supported by the Brazilian Government, MEC/MCTI/CAPES/CNPq/FAPs EDITAL No. 61/2011-Science Without Borders Program, project number (402603/2012-5), and by FACEPE process number (IBPG-0889-5.01/11). The contribution by ALC was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) via grant BBS/E/C/000I0330.


  1. Adebayo SB, Cui M, Hong T, Johannesson KH, Martin EE (2018) Rare earth elements geochemistry and Nd isotopes in the Mississippi River and Gulf of Mexico mixing zone. Front Mar Sci 5:166CrossRefGoogle Scholar
  2. Alfaro MR, Nascimento CWA, Biondi CM, Silva YJAB, Silva YJAB, Accioly AMA, Montero A, Ugarte OM, Estevez J (2018) Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 162:317–324CrossRefGoogle Scholar
  3. Åström M (2001) Abundance and fractionation patterns of rare earth elements in streams affected by acid sulphate soils. Chem Geol 175(3–4):249–258CrossRefGoogle Scholar
  4. Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406CrossRefGoogle Scholar
  5. Alloway BJ (2013) Heavy metals in soils—trace metals and metalloids in soils and their bioavailability—third edition. In: SpringerGoogle Scholar
  6. Barros AML, Sobral MC, Gunkel G (2013) Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil. Wat Sci Tech 68(2):357–365CrossRefGoogle Scholar
  7. Baturin G, Lobus N, Peresypkin V, Komov V (2014) Geochemistry of channel drifts of the Kai River (Vietnam) and sediments of its mouth zone. Oceanology 54:788–797CrossRefGoogle Scholar
  8. Bau M, Knappe A, Dulski P (2006) Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chem Erde-Geochem 66(2):143–152CrossRefGoogle Scholar
  9. Blinova I, Lukjanova A, Muna M, Vija H, Kahru A (2018) Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Sci Total Environ 642:1100–1107CrossRefGoogle Scholar
  10. Brito P, Prego R, Mil-Homens M, Caçador I, Caetano M (2018) Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Sci Total Environ 621:317–325CrossRefGoogle Scholar
  11. Caccia VG, Millero FJ (2007) Distribution of yttrium and rare earths in Florida Bay sediments. Mar Chem 104(3–4):171–185CrossRefGoogle Scholar
  12. de Campos FF, Enzweiler J (2016) Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil. Environ Monit Assess 188:281CrossRefGoogle Scholar
  13. Cantalice JRB, Filho MC, Stosic BD, Piscoya VC, Guerra SMS, Singh VP (2013) Relationship between bedload and suspended sediment in the sand-bed Exu River, in the semi-arid region of Brazil. Hydrol Sci J 58(8):1789–1802CrossRefGoogle Scholar
  14. Cantalice JRB, Bezerra SA, Figueira SB, Inácio ESB, Silva MDRO (2009) Linhas Isoerosivas do Estado de Pernambuco - 1ª Aproximação. Caatinga (Mossoró, Brasil) 22: 75–80 (in Portuguese)Google Scholar
  15. Censi P, Sposito F, Inguaggiato C, Zuddas P, Inguaggiato S, Venturi M (2018) Zr, Hf and REE distribution in river water under different ionic strength conditions. Sci Total Environ 645:837–853CrossRefGoogle Scholar
  16. Cunha CSM, Silva YJAB, Escobar MEO, Nascimento CWA (2018) Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil. Environ Geochem Health:1–15Google Scholar
  17. Cuss CW, Donner MW, Grant-Weaver I, Noernberg T, Pelletier R, Sinnatamby RN, Shotyk W (2018) Measuring the distribution of trace elements amongst dissolved colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers. Sci Total Environ 642:1242–1251CrossRefGoogle Scholar
  18. Davranche M, Pourret O, Gruau G, Dia A (2004) Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide. J Colloid Interface Sci 277(2):271–279CrossRefGoogle Scholar
  19. Elbaz-Poulichet F, Seidel JL, Othoniel C (2002) Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Res 36(4):1102–1105CrossRefGoogle Scholar
  20. Ergun I, Keven K, Uruc I, Ekmekci Y, Canbakan B, Erden I, Karatan O (2006) The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transpl 21:697–700CrossRefGoogle Scholar
  21. Gerard M, Seyler P, Benedetti MF, Alves VP, Boaventura GR, Sondag F (2003) Rare earth elements in the Amazon basin. Hydrol Process 17:1379–1392CrossRefGoogle Scholar
  22. Gray JR (2005) Sediment data collection techniques. U.S. Geological Survey Training Course, Castle Rock and Vancouver, WAGoogle Scholar
  23. Gunkel G, Kosmol J, Sobral M, Rohn H, Montenegro S, Aureliano J (2007) Sugar cane industry as a source of water pollution – case study on the situation in Ipojuca River, Pernambuco, Brazil. Water Air Soil Pollut 180:261–269CrossRefGoogle Scholar
  24. Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci Total Environ 636:299–313CrossRefGoogle Scholar
  25. Hannigan R, Dorval E, Jones C (2010) The rare earth element chemistry of estuarine surface sediments in the Chesapeake Bay. Chem Geol 272:20–30CrossRefGoogle Scholar
  26. Hissler C, Hostache R, Iffly JF, Pfister L, Stille P (2015) Anthropogenic rare earth element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic sediment transport modelling. Compt Rendus Geosci 347(5–6):294–303CrossRefGoogle Scholar
  27. Horowitz AJ, Elrick KA, Smith JJ (2001) Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the NASQAN programme. Hydrol Process 15:1107–1132CrossRefGoogle Scholar
  28. Horowitz AJ (2003) An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process 17:3387–3409CrossRefGoogle Scholar
  29. Hu Z, Haneklaus S, Sparovek G, Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plant Anal 37:1381–1420CrossRefGoogle Scholar
  30. Idee JM, Corot C (2008) Anaphylactic shock after first exposure to a macrocyclic gadolinium chelate: a few comments. J Allergy Clin Immun 122:215–216CrossRefGoogle Scholar
  31. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources (2014), update (2015) International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. FAO, Rome, p 106Google Scholar
  32. Johannesson KH, Chevis DA, Burdige DJ, Cable JE, Martin JB, Roy M (2011) Submarine groundwater discharge is an important net source of light and middle REEs to coastal waters of the Indian River Lagoon, Florida, USA. Geochim Cosmochim Ac 75:825–843CrossRefGoogle Scholar
  33. Kalender L, Aytimur G (2016) REE geochemistry of Euphrates River. Turkey J Chem doi 2016:1–13. CrossRefGoogle Scholar
  34. Kay J (2008) Nephrogenic systemic fibrosis: a gadolinium-associated fibrosing disorder in patients with renal dysfunction. Ann Rheum Dis 67(3):66–69Google Scholar
  35. Knappe A, Möller P, Dulski P, Pekdeger A (2005) Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chem Erde-Geochem 65(2):167–189CrossRefGoogle Scholar
  36. Kritsananuwat R, Sahoo SK, Fukushi M, Chanyotha S (2015) Distribution of rare earth elements, thorium and uranium in gulf of Thailand’s sediments. Environ Earth Sci 73:3361–3374CrossRefGoogle Scholar
  37. Kulaksiz S, Bau M (2013) Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet Sci Lett 362:43–50CrossRefGoogle Scholar
  38. Kuss J, Garbe-Schonberg CD, Kremling K (2001) Rare earth elements in suspended particulate material of North Atlantic surface waters. Geochim Cosmochim Ac 65:187–199CrossRefGoogle Scholar
  39. Laveuf C, Cornu S (2009) A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154:1–12CrossRefGoogle Scholar
  40. Li C, Shi X, Kao S, Liu Y, Lyu H, Zou J, Liu S, Qiao S (2013) Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan. J Asian Earth Sci 69:39–47CrossRefGoogle Scholar
  41. Liang T, Li K, Wang L (2014) State of rare earth elements in different environmental components in mining areas of China. Environ Monit Assess 186:1499–1513CrossRefGoogle Scholar
  42. Löll M, Reiher W, Felix-Henningsen P (2011) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nutri Soil Sc 174(4):644–654CrossRefGoogle Scholar
  43. Liu H, Pourret O, Guo H, Bonhoure J (2017) Rare earth elements sorption to iron oxyhydroxide: model development and application to groundwater. Appl Geochem 87:158–166CrossRefGoogle Scholar
  44. Mao H, Liu C, Zhao Z, Yang J (2017) Distribution of rare earth elements of granitic regolith under the influence of climate. Acta Geochim 36(3):440–445CrossRefGoogle Scholar
  45. Martin JM, Hogdahl O, Philippot JC (1976) Rare earth element supply to the ocean. J Geophys Res 81(18):3119–3124CrossRefGoogle Scholar
  46. Merschel G, Bau M (2015) Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci Total Environ 533:91–101CrossRefGoogle Scholar
  47. Milliman JD, Farnsworth KL (2011) Runoff, erosion, and delivery to the coastal ocean. In: River discharge to the coastal ocean: a global synthesis. Cambridge University Press, Cambridge, pp 13–69CrossRefGoogle Scholar
  48. Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Ac 40(12):1539–1551CrossRefGoogle Scholar
  49. National Institute of Standards and Technology – NIST (2002) Standard Reference Materials–SRM 2709, 2710 and 2711 Addendum Issue Date: 18 JanuaryGoogle Scholar
  50. Noack CW, David AD, Athanasios KK (2014) Rare earth element distributions and trends in natural waters with a focus on groundwater. Environ Sci Technol 48(8):4317–4326CrossRefGoogle Scholar
  51. Odoma AN, Obaje NG, Omada JI, Idakwo SO, Erbacher J (2015) Mineralogical, chemical composition and distribution of rare earth elements in clay-rich sediments from southeastern Nigeria. J Afr Earth Sci 102:50–60CrossRefGoogle Scholar
  52. Patino LC, Velbel MA, Price JR, Wade JA (2003) Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala. Chem Geol 202:343–364CrossRefGoogle Scholar
  53. Paye HS, Mello JWV, Mascarenhas GRLM, Gasparon M (2016) Distribution and fractionation of the rare earth elements in Brazilian soils. J Geochem Explor 161:27–41CrossRefGoogle Scholar
  54. Pepi S, Sansone L, Chicca M, Marrocchino E, Vaccaro C (2016) Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera”. Environ Monit Assess 188:477CrossRefGoogle Scholar
  55. Pepi S, Sardella A, Bonazza A, Vaccaro C (2018) Geochemical caper fingerprints as a tool for geographical origin identification. Environ Geochem Health:1–19Google Scholar
  56. Piper DZ, Bau M (2013) Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions. Am J Anal Chem 4(10A):69–83CrossRefGoogle Scholar
  57. Polyakov V, Kimoto A, Nearing M, Nichols M (2009) Tracing sediment movement on a semiarid watershed using rare earth elements. Soil Sci Soc Am J 73:1559–1565CrossRefGoogle Scholar
  58. Pourret O, Tuduri J (2017) Continental shelves as potential resource of rare earth elements. Sci Rep 7(1):5857CrossRefGoogle Scholar
  59. Prajith A, Rao VP, Kessarkar PM (2015) Controls on the distribution and fractionation of yttrium and rare earth elements in core sediments from the Mandovi estuary, western India. Cont Shelf Res 92:59–71CrossRefGoogle Scholar
  60. Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F (2009) Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere 75(8):1057–1064CrossRefGoogle Scholar
  61. Ramesh R, Ramanathan A, Ramesh S, Purvaja R, Subramanian V (2000) Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochem J 34:295–319CrossRefGoogle Scholar
  62. Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, Guilherme LRG (2016) Rare earth elements in the soil environment. Curr Pollut Rep 2:28–50CrossRefGoogle Scholar
  63. Rao CRM, Sahuquillo A, Lopez-Sanchez JF (2010) Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Anal Chim Acta 662(2):128–136CrossRefGoogle Scholar
  64. Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevaullier P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61CrossRefGoogle Scholar
  65. Sadeghi M, Morris GA, Carranza EJM, Ladenberger A, Andersson M (2013) Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. J Geochem Explor 133:160–175CrossRefGoogle Scholar
  66. Shynu R, Rao VP, Kessarkar PM, Rao T (2011) Rare earth elements in suspended and bottom sediments of the Mandovi estuary, central west coast of India: influence of mining. Estuar Coast Shelf Sci 94:355–368CrossRefGoogle Scholar
  67. Silva YJAB, Cantalice JRB, Singh VP, Nascimento CWA, Piscoya VC, Guerra SM (2015a) Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil. Environ Sci Pollut R 22:14755–14766CrossRefGoogle Scholar
  68. Silva YJAB, Nascimento CWA, Cantalice JRB, Silva YJAB, Cruz CMCA (2015b) Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environ Monit Assess 187:1–10CrossRefGoogle Scholar
  69. Silva YJAB, Nascimento CWA, Silva YJAB, Biondi CM, Silva CMCAC (2016) Rare earth element concentrations in Brazilian benchmark soils. Rev Bras de Cienc Solo 40:1–13Google Scholar
  70. Silva YJAB, Cantalice JRB, Nascimento CWA, Singh VP, Silva YJAB, Silva CMCAC, Silva MO, Guerra SMS (2017a) Bedload as an indicator of heavy metal contamination in a Brazilian anthropized watershed. Catena 153:106–113CrossRefGoogle Scholar
  71. Silva YJAB, do Nascimento CWA, Biondi CM, van Straaten P, de Souza Júnior VS, da Silva YJAB, Santos CA, Araújo JCT (2017b) Influence of metaluminous granite mineralogy on the rare earth element geochemistry of rocks and soils along a climosequence in Brazil. Geoderma 306:28–39CrossRefGoogle Scholar
  72. Smith C, Liu XM (2018) Spatial and temporal distribution of rare earth elements in the Neuse River, North Carolina. Chem Geol 488:34–43CrossRefGoogle Scholar
  73. Secretaria de Recursos Hídricos – SRH (2010) Plano hidroambiental da bacia hidrográfica do rio Ipojuca: Diagnóstico Hidroambiental. Volumes 1, 2 e 3. (in Portuguese)Google Scholar
  74. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, OxfordGoogle Scholar
  75. Taylor KG, Boyd NA, Boult S (2003) Sediments, porewaters and diagenesis in an urban water body, Salford, UK: impacts of remediation. Hydrol Process 17:2049–2061CrossRefGoogle Scholar
  76. Tyler G, Olsson T (2002) Conditions related to solubility of rare and minor elements in forest soils. J Plant Nutr Soil Sci 165:594–601CrossRefGoogle Scholar
  77. Tyler G (2004) Rare earth elements in soil and plant systems—a review. Plant Soil 276:191–206CrossRefGoogle Scholar
  78. USEPA (1998) Method 3051A—microwave assisted acid digestion of sediments, sludges, soils, and oilsGoogle Scholar
  79. Verplanck PL, Furlong ET, Gray JL, Phillips PJ, Wolf RE, Esposito K (2010) Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants. Environ Sci Technol 44:3876–3882CrossRefGoogle Scholar
  80. Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in world Rivers: new insights from a new database. Sci Total Environ 407:853–868CrossRefGoogle Scholar
  81. Xu N, Morgan B, Rate AW (2018) From source to sink: rare-earth elements trace the legacy of sulfuric dredge spoils on estuarine sediments. Sci Total Environ 637-638:1537–1549CrossRefGoogle Scholar
  82. Xu Y, Song J, Duan L, Li X, Yuan H, Li N, Zhang P, Zhang Y, Xu S, Zhang M, Wu X, Yin X (2012) Fraction characteristics of rare earth elements in the surface sediment of Bohai Bay, North China. Environ Monit Assess 184:7275–7292CrossRefGoogle Scholar
  83. Wei FS, Zheng CJ, Chen JS, Wu YY (1991) Study on the background contents on 61 elements of soils in China. J Environ Sci 12:12–20Google Scholar
  84. Willis SS, Johannesson KH (2011) Controls on the geochemistry of rare earth elements in sediments and groundwaters of the Aquia aquifer, Maryland, USA. Chem Geol 285:32–49CrossRefGoogle Scholar
  85. Yang CT (1996) Bedload transport. In: Sediment transport: theory and practice. (pp 90–121). McGraw-HillGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuri Jacques Agra Bezerra da Silva
    • 1
    Email author
  • Clístenes Williams Araújo do Nascimento
    • 2
  • Ygor Jacques Agra Bezerra da Silva
    • 2
  • Fábio Farias Amorim
    • 2
  • José Ramon Barros Cantalice
    • 2
  • Vijay P. Singh
    • 3
  • Adrian L. Collins
    • 4
  1. 1.Agronomy DepartmentFederal University of Piaui (UFPI)Bom JesusBrazil
  2. 2.Agronomy DepartmentFederal Rural University of Pernambuco (UFRPE)RecifeBrazil
  3. 3.Biological and Agricultural Engineering Department, Zachry Department of Civil EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Sustainable Agriculture SciencesRothamsted ResearchOkehamptonUK

Personalised recommendations