Advertisement

Assessing the ratio of Bacillus spores and vegetative cells by shotgun proteomics

  • Charlotte Mappa
  • Olivier Pible
  • Jean Armengaud
  • Béatrice Alpha-Bazin
Innovations in environmental sciences related to chemical, biological, radiological and nuclear risks

Abstract

Mass spectrometry for rapid identification of microorganisms is expanding over the last years because this approach is quick. This methodology provides a decisive interest to fight against bioterrorism as it is applicable whatever the pathogen to be considered and often allows subtyping which may be crucial for confirming a massive and widespread attack with biological agents. Here, we present a methodology based on next-generation proteomics and tandem mass spectrometry for discovering numerous protein biomarkers allowing the discrimination of spores and vegetative cells of Bacillus atrophaeus, a biowarfare simulant. We propose a global quantitative evaluation of the two groups of discriminant biomarkers based on their aggregated normalized spectral abundance factors.

Keywords

Bacillus Detection Mass spectrometry Shotgun proteomics Spores 

Notes

Acknowledgments

We thank Jean-Charles Gaillard and Guylaine Miotello for invaluable technical help with the mass spectrometry platform.

Funding information

This work was funded in part by the French joint ministerial program of R&D against CBRNE threats and the ANR program “Phylopeptidomics” (ANR-17-CE18-0023-01). CM was supported by DGA and CEA

Supplementary material

11356_2018_3341_MOESM1_ESM.xlsx (5.1 mb)
Supplementary Table S1 (XLSX 5210 kb)
11356_2018_3341_MOESM2_ESM.xlsx (201 kb)
Supplementary Table S2 (XLSX 200 kb)
11356_2018_3341_MOESM3_ESM.xlsx (1.5 mb)
Supplementary Table S3 (XLSX 1512 kb)
11356_2018_3341_MOESM4_ESM.xlsx (169 kb)
Supplementary Table S4 (XLSX 168 kb)
11356_2018_3341_MOESM5_ESM.xlsx (629 kb)
Supplementary Table S5 (XLSX 629 kb)
11356_2018_3341_MOESM6_ESM.xlsx (44 kb)
Supplementary Table S6 (XLSX 44 kb)

References

  1. Armengaud J (2013) Microbiology and proteomics, getting the best of both worlds! Environ Microbiol 15:12–23CrossRefGoogle Scholar
  2. Armengaud J (2016) Next-generation proteomics faces new challenges in environmental biotechnology. Curr Opin Biotechnol 38:174–182CrossRefGoogle Scholar
  3. Armengaud J (2017) Striking against bioterrorism with advanced proteomics and reference methods. Proteomics 17CrossRefGoogle Scholar
  4. Baier D, Reineke K, Doehner MA, Knorr D (2011) Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation. High Pressure Res 31:110–115CrossRefGoogle Scholar
  5. Barras V, Greub G (2014) History of biological warfare and bioterrorism. Clin Microbiol Infect 20:497–502CrossRefGoogle Scholar
  6. Buhr TL, McPherson DC, Gutting BW (2008) Analysis of broth-cultured Bacillus atrophaeus and Bacillus cereus spores. J Appl Microbiol 105:1604–1613CrossRefGoogle Scholar
  7. Carvalho PC, Fischer JS, Xu T, Yates JR 3rd, Barbosa VC (2012) PatternLab: from mass spectra to label-free differential shotgun proteomics. Curr Protoc Bioinformatics Chapter 13:Unit13.19Google Scholar
  8. Castanha ER, Fox A, Fox KF (2006) Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 67:230–240CrossRefGoogle Scholar
  9. Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F (2014) Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics 13:716–732CrossRefGoogle Scholar
  10. Chenau J, Fenaille F, Ezan E, Morel N, Lamourette P, Goossens PL, Becher F (2011) Sensitive detection of Bacillus anthracis spores by immunocapture and liquid chromatography-tandem mass spectrometry. Anal Chem 83:8675–8682CrossRefGoogle Scholar
  11. Chitlaru T, Israeli M, Bar-Haim E, Elia U, Rotem S, Ehrlich S, Cohen O, Shafferman A (2016) Next-generation Bacillus anthracis live attenuated spore vaccine based on the htrA(−) (high temperature requirement A) Sterne strain. Sci Rep 6:18908CrossRefGoogle Scholar
  12. Christie-Oleza JA, Miotello G, Armengaud J (2013a) Proteogenomic definition of biomarkers for the large Roseobacter clade and application for a quick screening of new environmental isolates. J Proteome Res 12:5331–5339CrossRefGoogle Scholar
  13. Christie-Oleza JA, Pina-Villalonga JM, Bosch R, Nogales B, Armengaud J (2012) Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria. Mol Cell Proteomics 11:M111.013110CrossRefGoogle Scholar
  14. Christie-Oleza JA, Pina-Villalonga JM, Guerin P, Miotello G, Bosch R, Nogales B, Armengaud J (2013b) Shotgun nanoLC-MS/MS proteogenomics to document MALDI-TOF biomarkers for screening new members of the Ruegeria genus. Environ Microbiol 15:133–147CrossRefGoogle Scholar
  15. Clair G, Armengaud J, Duport C (2012) Restricting fermentative potential by proteome remodeling: an adaptive strategy evidenced in Bacillus cereus. Mol Cell Proteomics 11:M111.013102CrossRefGoogle Scholar
  16. Czerwieniec GA, Russell SC, Tobias HJ, Pitesky ME, Fergenson DP, Steele P, Srivastava A, Horn JM, Frank M, Gard EE, Lebrilla CB (2005) Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. Anal Chem 77:1081–1087CrossRefGoogle Scholar
  17. de Hoon MJ, Eichenberger P, Vitkup D (2010) Hierarchical evolution of the bacterial sporulation network. Curr Biol 20:R735–R745CrossRefGoogle Scholar
  18. Dickinson DN, La Duc MT, Haskins WE, Gornushkin I, Winefordner JD, Powell DH, Venkateswaran K (2004) Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling. Appl Environ Microbiol 70:475–482CrossRefGoogle Scholar
  19. Dupierris V, Masselon C, Court M, Kieffer-Jaquinod S, Bruley C (2009) A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. Bioinformatics 25:1980–1981CrossRefGoogle Scholar
  20. Duriez E, Armengaud J, Fenaille F, Ezan E (2016) Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. J Mass Spectrom 51:183–199CrossRefGoogle Scholar
  21. Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71CrossRefGoogle Scholar
  22. Eng C, Blouin Y, Ding N, Larigauderie G, Ramisse V, Pujol C (2015) Draft genome sequence of the biowarfare simulant Bacillus atrophaeus strain 930029. Genome Announc 3Google Scholar
  23. Fischer K, Hahn D, Hönerlage W, Zeyer J (1995) In situ detecton of spores and vegetative cells of Bacillus megaterium in soil by whole cell hybridization. Syst Appl Microbiol 18:265–273CrossRefGoogle Scholar
  24. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ (2012) Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14:2870–2890CrossRefGoogle Scholar
  25. Harrold ZR, Hertel MR, Gorman-Lewis D (2011) Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity. J Microbiol Methods 87:325–329CrossRefGoogle Scholar
  26. Hartmann EM, Allain F, Gaillard JC, Pible O, Armengaud J (2014) Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol Biol 1197:275–285CrossRefGoogle Scholar
  27. Huang CM, Foster KW, DeSilva TS, Van Kampen KR, Elmets CA, Tang DC (2004) Identification of Bacillus anthracis proteins associated with germination and early outgrowth by proteomic profiling of anthrax spores. Proteomics 4:2653–2661CrossRefGoogle Scholar
  28. Imperiale MJ, Casadevall A (2011) Bioterrorism: lessons learned since the anthrax mailings. MBio 2:e00232–e00211CrossRefGoogle Scholar
  29. Jagtap P, Michailidis G, Zielke R, Walker AK, Patel N, Strahler JR, Driks A, Andrews PC, Maddock JR (2006) Early events of Bacillus anthracis germination identified by time-course quantitative proteomics. Proteomics 6:5199–5211CrossRefGoogle Scholar
  30. Kempf MJ, Schubert WW, Beaudet RA (2008) Determination of lethality rate constants and D-values for Bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115 degrees C to 170 degrees C. Astrobiology 8:1169–1182CrossRefGoogle Scholar
  31. Kliem M, Sauer S (2012) The essence on mass spectrometry based microbial diagnostics. Curr Opin Microbiol 15:397–402CrossRefGoogle Scholar
  32. Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N, Watabe K (2002) Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148:3971–3982CrossRefGoogle Scholar
  33. Lasch P, Beyer W, Nattermann H, Stammler M, Siegbrecht E, Grunow R, Naumann D (2009) Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol 75:7229–7242CrossRefGoogle Scholar
  34. McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11:33–44CrossRefGoogle Scholar
  35. Plaire D, Puaud S, Marsolier-Kergoat MC, Elalouf JM (2017) Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus) in soil samples. PLoS One 12:e0177112CrossRefGoogle Scholar
  36. Pribil PA, Patton E, Black G, Doroshenko V, Fenselau C (2005) Rapid characterization of Bacillus spores targeting species-unique peptides produced with an atmospheric pressure matrix-assisted laser desorption/ionization source. J Mass Spectrom 40:464–474CrossRefGoogle Scholar
  37. Raymond B, Federici BA (2017) In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA. FEMS Microbiol Ecol 93Google Scholar
  38. Rougemont B, Bontemps Gallo S, Ayciriex S, Carriere R, Hondermarck H, Lacroix JM, Le Blanc JC, Lemoine J (2017) Scout-MRM: multiplexed targeted mass spectrometry-based assay without retention time scheduling exemplified by Dickeya dadantii proteomic analysis during plant infection. Anal Chem 89:1421–1426CrossRefGoogle Scholar
  39. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82CrossRefGoogle Scholar
  40. Schaeffer AB, Fulton MD (1933) A simplfied method of staining endospores. Science 77:194–194CrossRefGoogle Scholar
  41. Setlow P (2007) I will survive: DNA protection in bacterial spores. Trends Microbiol 15:172–180CrossRefGoogle Scholar
  42. Srivastava A, Pitesky ME, Steele PT, Tobias HJ, Fergenson DP, Horn JM, Russell SC, Czerwieniec GA, Lebrilla CB, Gard EE, Frank M (2005) Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry. Anal Chem 77:3315–3323CrossRefGoogle Scholar
  43. Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG (2018) Stoichiometry, absolute abundance, and localization of proteins in the Bacillus cereus spore coat insoluble fraction determined using a QconCAT approach. J Proteome Res 17:903–917CrossRefGoogle Scholar
  44. Svedruzic D, Liu Y, Reinhardt LA, Wroclawska E, Cleland WW, Richards NG (2007) Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys 464:36–47CrossRefGoogle Scholar
  45. Swatkoski S, Russell SC, Edwards N, Fenselau C (2006) Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Anal Chem 78:181–188CrossRefGoogle Scholar
  46. Tobias HJ, Pitesky ME, Fergenson DP, Steele PT, Horn J, Frank M, Gard EE (2006) Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using bioaerosol mass spectrometry. J Microbiol Methods 67:56–63CrossRefGoogle Scholar
  47. Wang T, Wu J, Qi J, Hao L, Yi Y, Zhang Z (2016) Kinetics of inactivation of Bacillus subtilis subsp. niger spores and Staphylococcus albus on paper by chlorine dioxide gas in an enclosed space. Appl Environ Microbiol 82:3061–3069CrossRefGoogle Scholar
  48. Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG (2016) Bacillus subtilis spore inner membrane proteome. J Proteome Res 15:585–594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D)Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRABagnols sur CèzeFrance

Personalised recommendations