Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 34, pp 34496–34509 | Cite as

Spatial variability and seasonal toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro, Brazil): acute effects on earthworms

  • Christiane Monte
  • Ricardo Cesar
  • Ana Paula Rodrigues
  • Danielle Siqueira
  • Aline Serrano
  • Leticia Abreu
  • Matheus Teixeira
  • Mariana Vezzone
  • Helena Polivanov
  • Zuleica Castilhos
  • Tácio de Campos
  • Glaucia G. M. Machado
  • Weber F. Souza
  • Wilson Machado
Research Article
  • 35 Downloads

Abstract

The toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro, Brazil) was evaluated using acute bioassays with Eisenia andrei and metal determination. The sediments were collected in August 2014 (winter) and February 2015 (summer) and in five areas distributed along the Bay: Port of Rio de Janeiro, Port of Niterói, Meriti River mouth, Iguaçu River mouth, and the Environmental Protection Area (APA) of Guapimirim. The sediments were mixed with a ferralsol (a representative Brazilian tropical soil) in proportions varying between 0 (pure soil) and 30%. The acute bioassays with E. andrei followed a standard protocol (ISO 11268-2:2012). Total metal determination in the sediments was performed by ICP-OES. The medium lethal earthworm concentration (LC50) was estimated through PriProbit analysis. The sediments from the APA of Guapimirim, which is a control area at the Guanabara Bay, were the only ones whose total metal concentrations were in agreement with the limits established by Brazilian law for land disposal of dredged sediments. However, the sediments collected in the APA of Guapimirim were the most toxic ones among the study areas due to very high contents of salts in these materials. Winter sediments were generally more toxic compared to the summer ones due to the increase of metal concentrations and salt precipitation to bottom sediments during the winter. The exceptions were (i) the sediments from APA of Guapimirim, where the toxicity in the summer (LC50 = 3.99%) and winter (LC50 = 4.60%) were relatively similar to each other, since the toxicity is linked to salt in excess; and (ii) the Iguaçu River mouth, where the presence of mangrove areas might be associated with the filtering of pollution sources (winter LC50 = 12.67%; summer LC50 = 11.58%). In the Port of Rio de Janeiro, LC50 obtained in the winter (7.30%) was almost three times lower than that found in the summer (19.64%). The sediments from Meriti River mouth showed the highest total metal concentrations, were the most toxic sediments among the study areas (excluding the APA of Guapimirim), and its winter LC50 (6.64%) was almost twice lower than that obtained in the summer (12.55%). By following the same tendency, summer LC50 (17.52%) found for the sediment collected in the Port of Niterói was also higher than the value found in the winter (12.34%). Finally, the dredged sediments from Guanabara Bay were toxic to earthworms in mixtures with pure ferralsol and winter samples were generally more toxic than the summer ones, in agreement with the increase of metal and salt concentrations during the winter.

Keywords

Guanabara Bay Metal Ferralsol Eisenia andrei Bioassay 

Notes

Funding information

We would like to thank the CNPq (National Brazilian Council for Scientific and Technological Development) and CAPES (Coordination for the Improvement of Higher Level-or Education-Personnel) Institutions for providing grants for Christiane Monte, Ana Paula Rodrigues, Danielle Siqueira, Aline Serrano e Matheus Teixeira. This study was supported by CNPq (process number 481898/2012-3).

References

  1. Abreu IM, Cordeiro RC, Soares-Gomes A, Abessa DMS, Maranho LA, Santelli RE (2016) Ecological risk evaluation of sediment metals in a tropical euthrophic bay, Guanabara Bay, Southeast Atlantic. Mar Pollut Bull 109:435–445.  https://doi.org/10.1016/j.marpolbul.2016.05.030 CrossRefGoogle Scholar
  2. Alamino RCJ, Polivanov H, Campos TMPC, Silva VHG, Santos LV, Mendes JC (2007) Biodisponibilidade de cádmio em latossolo acrescido de lodo de esgoto. Anu Inst Geocienc 30(2):45–54Google Scholar
  3. Baptista Neto JA, Crapez M, Vilela CG, Mcallister JJ (2005) Concentration and bioavailability of heavy metals in sediments from Niterói Harbour/S.E. Brazil. J Coast Res 21:811–817.  https://doi.org/10.2112/012-NIS.1 CrossRefGoogle Scholar
  4. Baptista-Neto JA, Gingele FX, Leipe T, Brehme I (2006) Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environ Geol 49:1051–1063.  https://doi.org/10.1007/s00254-005-0149-1 CrossRefGoogle Scholar
  5. Barrocas PR, Wasserman JC (1995) O mercúrio na Baía da Guanabara: uma revisão histórica. Geochim Bras 9(2):115–127Google Scholar
  6. Berge A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 407:7995–8008.  https://doi.org/10.1007/s00216-015-8972-z CrossRefGoogle Scholar
  7. Bianchi MO (2013) Ensaios Ecotoxicológicos como ferramenta para avaliação do impacto ambiental de resíduos de mineração sobre o solo. Dissertation, Rural Federal University of Rio de JaneiroGoogle Scholar
  8. Carbonell G, Gómez JPN, Babín MM, Fernández C, Alonso E, Tarazona JV (2009) Sewage sludge applied to agricultural soil: ecotoxicological effects on representative soil organisms. Ecotoxicol Environ Saf 72:1309–1319.  https://doi.org/10.1016/j.ecoenv.2009.01.007 CrossRefGoogle Scholar
  9. Cesar RG, Egler S, Polivanov H, Castilhos ZC, Rodrigues AP (2011) Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais state, Brazil. Environ Earth Sci 64:211–222.  https://doi.org/10.1007/s12665-010-0840-8 CrossRefGoogle Scholar
  10. Cesar RG, Natal-Da-Luz T, Silva F, Bidone ED, Castilhos ZC, Polivanov H, Sousa JP (2015) Ecotoxicological assessment of a dredged sediment using bioassays with three species of soil invertebrates. Ecotoxicol 24:414–423.  https://doi.org/10.1007/s10646-014-1390-8 CrossRefGoogle Scholar
  11. Cesar RG, Natal-da-Luz T, Sousa JP, Bidone ED, Colonese JP, Castilhos ZC, Egler SG, Polivanov H (2014) Disposal of dredged sediments in tropical soils: ecotoxicological effects on earthworms. Environ Monit Assess 186:1487–1497.  https://doi.org/10.1007/s10661-013-3468-9 CrossRefGoogle Scholar
  12. Cesar RG, Rodrigues AP, Rocha BCRC, Campos TMP, Monte C, Dealtry S, Castilhos ZC, Machado W (2017) Ecotoxicological assessment of dredged sediments from Guanabara and Sepetiba bays (Rio de Janeiro State, Brazil) using bioassays with earthworms. In: Araujo C, Shinn C (eds) Ecotoxicology in Latin America. Nova Publishers, New York, pp 309–324Google Scholar
  13. Cesar RG, Silva MB, Colonese JP, Bidone ED, Egler S, Castilhos ZC, Polivanov H (2012) Influence of the properties of tropical soils in the toxicity and bioavailability of heavy metals in sewage sludge-amended lands. Environ Earth Sci 66:2281–2292.  https://doi.org/10.1007/s12665-011-1449-2 CrossRefGoogle Scholar
  14. Conselho Nacional de Meio Ambiente (CONAMA) (2009) Resolução 420. Available at: <http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=506>. Accessed November 2012
  15. Conselho Nacional do Meio Ambiente (CONAMA) (2012) Resolução 454. Available at: <http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=693>. Accessed September 2018
  16. Covelli S, Protopsalti I, Acquavita A, Sperle M, Bonardi M, Emili A (2012) Spatial variation, speciation and sedimentary records of mercury in the Guanabara Bay (Rio de Janeiro, Brazil). Cont Shelf Res 35:29–42CrossRefGoogle Scholar
  17. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 1997. Centro Nacional de Pesquisa de Solos. In: Manual de Métodos de Análises de Solo. Rio de Janeiro, RJ, p. 212Google Scholar
  18. Farias CO, Hamacher C, Wagner AL, Campos RC, Godoy JM (2007) Trace metal contamination in mangrove sediments, Guanabara Bay, Rio de Janeiro, Brazil. J Braz Chem Soc 18(6):1194–1206.  https://doi.org/10.1590/S0103-50532007000600014 CrossRefGoogle Scholar
  19. Fiori CS, Rodrigues APC, Santelli RE, Cordeiro RC, Carvalheira RG, Araújo PC, Castilhos ZC, Bidone ED (2013) Ecological risk index for aquatic pollution control: a case study of coastal water bodies from the Rio de Janeiro state, southeastern Brazil. Geochim Bras 27:24–36CrossRefGoogle Scholar
  20. Fistarol G, Coutinho FH, Moreira APB, Cánovas A, Paulajr SEM, Coutinho R, Moura RL, Valentin JL, Tenenbaum DR, Paranhos R, Valle RAB, Vicente ACP, Pereira RC, Kruger R, Rezende CE, Thompson CC, Salomon PS, Thompson FL (2015) Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Front Microbiol 6:1232–1242.  https://doi.org/10.3389/fmicb.2015.01232 CrossRefGoogle Scholar
  21. Garcia M (2004) Effects of pesticides on soil fauna: Development of ecotoxicology test methods for tropical regions. In: Vlek PLG et al (eds) Ecology and Development Series, vol 19. Cuvillier Verlag, Gottingen, p 282Google Scholar
  22. Godoy JM, Moreira I, Bragan MJ, Wanderley C, Mendes LB (1998) A study of Guanabara Bay sedimentation rates. J Radioanal Nucl Ch 227:157–160.  https://doi.org/10.1007/BF02386450 CrossRefGoogle Scholar
  23. Guzyte G, Sujetoviene G, Zaltauskaite J (2011). Effects of salinity on earthworm (Eisenia fetida). In: The 8th International Conference of Environmental Engineering, Vilnius, Lithuania. p. 111–114Google Scholar
  24. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, Raczelowski P (2002) An overview of toxicant identification in sediments and dredged materials. Mar Pollut Bull 44:286–293.  https://doi.org/10.1016/S0025-326X(01)00251-X CrossRefGoogle Scholar
  25. ISO (International Organization for Standardization) 2012. Soil quality — Effects of pollutants on earthworms (Eisenia fetida) — Part 1: Determination of acute toxicity to Eisenia fetida/andrei. ISO 11268–2. Geneve, SwitzerlandGoogle Scholar
  26. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 10(4):715–740Google Scholar
  27. Kjerfve B, Ribeiro CHA, Dias GTM, Filippo AM, Quaresma VS (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17:1609–1643.  https://doi.org/10.1016/S0278-4343(97)00028-9 CrossRefGoogle Scholar
  28. Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in Southeast Brazil. Environ Pollut 120:455–461.  https://doi.org/10.1016/S0269-7491(02)00108-2 CrossRefGoogle Scholar
  29. Machado W, Carvalho MF, Santelli RE, Maddock JE (2004) Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Mar Pollut Bull 49(1–2):89–92.  https://doi.org/10.1016/j.marpolbul.2004.01.012 CrossRefGoogle Scholar
  30. Machado W, Rodrigues APC, Bidone ED, Sella SM, Santelli RE (2011) Evaluation of cu potential bioavailability changes upon coastal sediment resuspension: an example on how to improve the assessment of sediment dredging environmental risks. Environ Sci Poll Research International 18:1033–1036.  https://doi.org/10.1007/s11356-011-0517-1 CrossRefGoogle Scholar
  31. Machado W, Villar L, Monteiro F, Viana LCA, Santelli RE (2010) Relation of acid-volatile sulfides (AVS) with metals in sediments from eutrophicated estuaries: is it limited by metal-to-AVS ratios? J. Soils Sediments 10:1606–1610.  https://doi.org/10.1007/s11368-010-0297-0 CrossRefGoogle Scholar
  32. Maranho LA, Abreu IM, Santelli RE, Cordeiro RC, Soares-Gomes A, Moreira LB, Morais RD, Abessa DMS (2010) Acute and chronic toxicity of sediment samples from Guanabara Bay (RJ) during the rainy period. Braz J Oceanogr 58:77–85.  https://doi.org/10.1590/S1679-87592010000700010 CrossRefGoogle Scholar
  33. Monte CN, Rodrigues APC, Cordeiro RC, Freire AS, Santelli RE, Machado W (2015) Changes in cd and Zn bioavailability upon an experimental resuspension of highly contaminated coastal sediments from a tropical estuary. Sustain Water Resour Manag 1:332–335.  https://doi.org/10.1007/s40899-015-0034-3 CrossRefGoogle Scholar
  34. Monteiro FF, Cordeiro RC, Santelli RE, Machado W, Evangelista H, Villar LS, Viana LCA, Bidone ED (2011) Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environ Earth Sci 65(6):1661–1669.  https://doi.org/10.1007/s12665-011-1143-4 CrossRefGoogle Scholar
  35. Moser H, Römbke J (2009) Ecotoxicological characterization of waste – results and experiences on an international ring test. Springer Publisher, DessauCrossRefGoogle Scholar
  36. Müller G (1979) Schwermetalle in den Sedimenten des Rheins-Veränderungen seit. Umschau 24:778–783Google Scholar
  37. Munns WR, Berry WJ, Dewitt WT (2002) Toxicity testing, risk assessment, and options for dredged material management. Mar Pollut Bull 44:294–302.  https://doi.org/10.1016/S0025-326X(01)00250-8 CrossRefGoogle Scholar
  38. Natal-da-Luz T, Römbke J, Sousa JP (2008) Avoidance tests in site-specific risk assessment—influence of soil properties on the avoidance response of collembola and earthworms. Environ Toxicol Chem 27(5):1112–1117.  https://doi.org/10.1897/07-386.1 CrossRefGoogle Scholar
  39. Natal-da-Luz T, Tidona S, Jesus B, Morais PV, Sousa JP (2009) The use of sewage sludge as soil amendment: The need for an ecotoxicological evaluation. J Soils Sediments 9:246–260CrossRefGoogle Scholar
  40. Owojori OJ, Reinecke AJ, Rozanov AB (2009) The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Appl Soil Ecol 41:277–285.  https://doi.org/10.1016/j.apsoil.2008.11.006 CrossRefGoogle Scholar
  41. Paranhos R, Mayr LM (1993) Seasonal patterns of temperature and salinity in Guanabara Bay, Brazil. Fresenius Environ Bull 2:647–652Google Scholar
  42. Paranhos R, Pereira AP, Mayr LM (1998) Diel variation of water quality in a pollution gradient in a tropical polluted bay. Environ Monit Assess 50:131–141.  https://doi.org/10.1023/A:1005855914215 CrossRefGoogle Scholar
  43. Peña-Icart M, Mendiguchia C, Villanueva-Tagle ME, Pomares-Alfonso MS, Moreno C (2014) Revisiting methods for the determination of bioavailable metals in coastal sediments. Mar Pollut Bull 89:67–74CrossRefGoogle Scholar
  44. Pinto APF (1995) Geoquímica do mercúrio em perfis sedimentares de manguezais da Baía de Guanabara – Rio de Janeiro – Brasil. Dissertation, Departament of Geochemistry, Federal Flumininse UniversityGoogle Scholar
  45. Rego VS, Pfeiffer WC, Barcellos CC, Rezende CE, Malm O, Souza CMM (1993) Heavy metal transport in the Acari-São João de Meriti river system, Brazil. Environ Technol 14:167–174.  https://doi.org/10.1080/09593339309385276 CrossRefGoogle Scholar
  46. Rodrigues APC, Maciel PO, Silva LCCP, Almosny NRP, Andreata JV, Bidone ED, Castilhos ZC (2011) Relationship between mercury concentrations in the blood with that in the muscle of four estuarine tropical fish species, Rio de Janeiro state, Brazil. Bull Environ Contam Toxicol 86:357–362.  https://doi.org/10.1007/s00128-011-0228-9 CrossRefGoogle Scholar
  47. Sakuma M (1998) Probit analysis of preference data. Appl Entomol Zool 33:339–347.  https://doi.org/10.1303/aez.33.339 CrossRefGoogle Scholar
  48. Selivanovskaya SY, Latypova VZ (2003) The use of bioassays for evaluating the toxicity of sewage sludge and sewage sludge-amended soil. J Soils Sediments 3(2):85–92.  https://doi.org/10.1007/BF02991073 CrossRefGoogle Scholar
  49. Sivakumar S (2015) Effects of metals on earthworm life cycles: a review. Environ Monit Assess 187:530.  https://doi.org/10.1007/s10661-015-4742-9 CrossRefGoogle Scholar
  50. Silva TF, Azevedo DA, Neto FRA (2007) Distribution of polycyclic aromatic hydrocarbons in surface sediments and waters from Guanabara Bay, Rio de Janeiro, Brazil. J Braz Chem Soc 18(3):628–637.  https://doi.org/10.1590/S0103-50532007000300021 CrossRefGoogle Scholar
  51. Silveira RP, Rodrigues APC, Santelli RE, Cordeiro RC, Bidone ED (2011) Mass balance in the monitoring of pollutants in tidal rivers of the Guanabara Bay, Rio de Janeiro, Brazil. Environ Monit Assess 181:1–9.  https://doi.org/10.1007/s10661-010-1821-9 CrossRefGoogle Scholar
  52. Straalen NM, Donker MH, Vijver MG, Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136:409–417.  https://doi.org/10.1016/j.envpol.2005.01.019 CrossRefGoogle Scholar
  53. Szafer P, Szafer K, Glasby GP, Pempkowiak J, Kaliszan R (1996) Heavy-metal pollution in surficial sediments from the Southern Baltic sea off Poland. J Env Sci Health. Part A: Env Sci Eng and Toxicol 31(10):2723–2754.  https://doi.org/10.1080/10934529609376520 CrossRefGoogle Scholar
  54. Turekian KK, Wedepohl KH (1961) Distribution of elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  55. Usmani Z, Kumar V (2015) Role of earthworms against metal contamination: a review. J Biol Environ Sci 6(1):414–427Google Scholar
  56. Utete B, Nhiwatiwa T, Barson M, Mabika N (2013) Metal correlations and mobility in sediment and water from the Gwebi River in the upper Manyame catchment, Zimbabwe. Int J Water Sci 2(4):1–8.  https://doi.org/10.5772/57199 CrossRefGoogle Scholar
  57. Vacha R, Cechmankova J, Skala J, Hoffman J, Cermak P, Sanka M, Vachova T (2011) Use of dredged sediments on agricultural soils from viewpoint of potentially toxic substances. Plant Soil Environ 57(8):388–395CrossRefGoogle Scholar
  58. Vezzone M, Cesar RG, Polivanov H, Serrano A, Teixeira M, Eckstein V, Bianchi MO, Castilhos ZC, Campos TM (2017) Ecotoxicological evaluation of dredged sediments from Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil) using bioassays with earthworms and springtails. Environ Earth Sci, submittedGoogle Scholar
  59. Wasserman JC, Freitas-Pinto AAP, Amouroux D (2000) Mercury concentrations in sediment profiles of a degraded tropical coastal environment. Environ Technol 21:297–305.  https://doi.org/10.1080/09593332108618117 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Christiane Monte
    • 1
    • 2
  • Ricardo Cesar
    • 3
  • Ana Paula Rodrigues
    • 1
  • Danielle Siqueira
    • 3
  • Aline Serrano
    • 3
  • Leticia Abreu
    • 3
  • Matheus Teixeira
    • 3
  • Mariana Vezzone
    • 3
    • 4
  • Helena Polivanov
    • 4
  • Zuleica Castilhos
    • 5
  • Tácio de Campos
    • 6
  • Glaucia G. M. Machado
    • 7
  • Weber F. Souza
    • 7
  • Wilson Machado
    • 1
  1. 1.UFF, Department of GeochemistryFluminense Federal UniversityNiteróiBrazil
  2. 2.UFOPA, Department of GeologyFederal University of Western ParáSantarémBrazil
  3. 3.UFRJ, CCMN–Geosciences Institute. Department of GeographyFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.UFRJ. CCMN–Geosciences Institute. Department of GeologyFederal University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.Centre for Mineral Technology, CETEM/MCTIRio de JaneiroBrazil
  6. 6.PUC-Rio, Department of Civil EngineeringPontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil
  7. 7.National Institute of Technology, INT. Analytical Chemistry DivisionRio de JaneiroBrazil

Personalised recommendations