Adsorption of ibuprofen using cysteine-modified silane-coated magnetic nanomaterial

  • Smitha Chandrashekar Kollarahithlu
  • Raj Mohan BalakrishnanEmail author
Appropriate Technologies to Combat Water Pollution


Industrialization and growth of the pharmaceutical companies have been a boon to the mankind in our day to day life in myriad ways. However, due to the uninhibited release of these active pharmaceutical compounds into the water systems has caused detrimental effects to the genetic pool. In this study, l-cysteine-modified 3-glycidyloxypropyltrimethoxysilane-coated magnetic nanomaterial showed a maximum removal of the efficiency of 82.90% for the nanomaterial dosage of 30 mg at an initial concentration of 50 mg L−1 at pH 6.0. Further, the nanomaterial showed reusability efficiency up to 80% for three cycles. The adsorption kinetics follow the pseudo-second-order reaction and the adsorption isotherm model best fits the Langmuir isotherm proving the adsorption process to be a monolayer sorption on a monolayer surface. This magnetic nanomaterial could serve as a promising tool for the removal of pharmaceutical compounds from aqueous solutions.

Graphical abstract


Nanoparticles Adsorption Pollutant removal Pharmaceutical Reusability 



The authors are grateful to the Nanotechnology Research Centre of SRM University, Kattankulathur for providing XRD facility, Mangalore University for providing FESEM, FTIR facility and Cochin Institute of Technology for providing TEM analysis facility, and Manipal University for Zeta analysis facility.

Supplementary material

11356_2018_3272_MOESM1_ESM.docx (584 kb)
ESM 1 (DOCX 583 kb)


  1. Ashjari M, Dehfuly S, Fatehi D, Shabani R, Koruji M (2015) Efficient functionalization of gold nanoparticles using cysteine conjugated protoporphyrin IX for singlet oxygen production in vitro. RSC Adv 5:104621–104628. CrossRefGoogle Scholar
  2. Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR (2017) Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci Rep 7:1–15. CrossRefGoogle Scholar
  3. Behera SK, Oh SY, Park HS (2012) Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. Int J Environ Sci Technol 9:85–94. CrossRefGoogle Scholar
  4. Caldeira E, Piskin E, Granadeiro L, Silva F, Gouveia IC (2013) Biofunctionalization of cellulosic fibres with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae. J Biotechnol 168:426–435. CrossRefGoogle Scholar
  5. Cui Y, Li Y, Yang Y, Liu X, Lei L, Zhou L, Pan F (2010) Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. J Biotechnol 150:171–174. CrossRefGoogle Scholar
  6. Deo RP (2014) Pharmaceuticals in the surface water of the USA: a review. Curr Environ Heal Reports 1:113–122. CrossRefGoogle Scholar
  7. Dey T (2006) Polymer-coated magnetic nanoparticles: surface modification and end-functionalization. J Nanosci Nanotechnol 6:2479–2483. CrossRefGoogle Scholar
  8. Dey T (2012) Magnetic materials and cellulosic nanofibers to remove arsenic and other heavy metals from water chapter 1. In: Dey T (ed) Nanotechnology for water purification. Universal Publishers, Boca Raton, FL, p 1-28Google Scholar
  9. Ding T, Yang M, Zhang J, Yang B, Lin K, Li J, Gan J (2017) Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. J Hazard Mater 330:127–134. CrossRefGoogle Scholar
  10. Enache DF, Vasile E, Simonescu CM, Răzvan A, Nicolescu A, Nechifor AC, Oprea O, Pătescu RE, Onose C, Dumitru F (2017) Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents. J Solid State Chem 253:318–328. CrossRefGoogle Scholar
  11. Ferrando-Climent L, Collado N, Buttiglieri G, Gros M, Rodriguez-Roda I, Rodriguez-Mozaz S, Barceló D (2012) Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Sci Total Environ 438:404–413. CrossRefGoogle Scholar
  12. Huang P, Shi HQ, Xiao HM, Li YQ, Hu N, Fu SY (2017) High performance surface-modified TiO2/silicone nanocomposite. Nature 7:1–7. CrossRefGoogle Scholar
  13. Ji K, Liu X, Lee S, Kang S, Kho Y, Giesy JP, Choi K (2013) Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis , and reproduction of zebrafish. J Hazard Mater 254–255:242–251. CrossRefGoogle Scholar
  14. Khalafi-Nezhad A, Nourisefat M, Panahi F (2015) L-cysteine functionalized magnetic nanoparticles (LCMNP): a novel magnetically separable organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitriles in water. Org Biomol Chem 13:7772–7779. CrossRefGoogle Scholar
  15. Koffeman AR, Valkhoff VE, Çelik S, Jong GW’, Sturkenboom MCJM, Bindels PJE, van der Lei J, Luijsterburg PAJ, Bierma-Zeinstra SMA (2014) High-risk use of over-the-counter non-steroidal anti-inflammatory drugs: a population-based cross-sectional study. Br J Gen Pract 64:191–198. CrossRefGoogle Scholar
  16. Konuray AO, Fernández-Francos X, Ramis X (2017) Analysis of the reaction mechanism of the thiol-epoxy addition initiated by nucleophilic tertiary amines. Polym Chem 8:5934–5947. CrossRefGoogle Scholar
  17. Kumar A, Kumar A, Sharma G, al-Muhtaseb A'H, Naushad M, Ghfar AA, Stadler FJ (2018) Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem Eng J 334:462–478. CrossRefGoogle Scholar
  18. Kunkel U, Radke M, Kunkel UWE, Radke M (2008) Biodegradation of acidic pharmaceuticals in bed sediments : insight from a laboratory experiment Biodegradation of Acidic Pharmaceuticals in Bed Sediments : Insight from a Laboratory Experiment. Environ Sci Technol 42:7273–7279. CrossRefGoogle Scholar
  19. López-Serna R, Jurado A, Vázquez-Suñé E, Carrera J, Petrović M, Barceló D (2013) Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ Pollut 174:305–315. CrossRefGoogle Scholar
  20. Mohammad-Beigi H, Yaghmaei S, Roostaazad R, Bardania H, Arpanaei A (2011) Effect of pH, citrate treatment and silane-coupling agent concentration on the magnetic, structural and surface properties of functionalized silica-coated iron oxide nanocomposite particles. Phys E Low-Dimensional Syst Nanostruct 44:618–627. CrossRefGoogle Scholar
  21. Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The Thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744. CrossRefGoogle Scholar
  22. Norte THO, Marcelino RBP, Moreira RPL, Binatti I, Starling MCVM, Amorim CC, Pereira ES, Rocha WR, Lago RM (2018) ESI-MS, UV-Vis, and theoretical investigation of Fe3+-amoxicillin complexation during coagulation. J Environ Eng (United States) 144:1–7. CrossRefGoogle Scholar
  23. Overturf MD, Anderson JC, Pandelides Z, Beyger L, Holdway DA (2015) Pharmaceuticals and personal care products: a critical review of the impacts on fish reproduction. Crit Rev Toxicol 45:469–491. CrossRefGoogle Scholar
  24. Rajamanickam D, Shanthi M (2016) Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. Arab J Chem 9:S1858–S1868. CrossRefGoogle Scholar
  25. Robati D (2013) Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostructure Chem 3:55. CrossRefGoogle Scholar
  26. Rosen JE, Gu FX (2011) Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir 27:10507–10513. CrossRefGoogle Scholar
  27. Sangeetha J, Philip J (2013) Synthesis, characterization and antimicrobial property of Fe3O4-Cys-HNQ nanocomplex, with L-cysteine molecule as a linker. RSC Adv 3:8047. CrossRefGoogle Scholar
  28. Shanmugam G, Sampath S, Selvaraj KK, Larsson DGJ, Ramaswamy BR (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21:921–931. CrossRefGoogle Scholar
  29. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater Res Bull 46:2204–2207. CrossRefGoogle Scholar
  30. Springer V, Pecini E, Avena M (2016) Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions. J Environ Chem Eng 4(4):3882–3890. CrossRefGoogle Scholar
  31. Streckova M, Hadraba H, Bures R, Faberova M, Roupcova P, Kubena I, Medvecky L, Girman V, Kollar P, Fuzer J, Cizmar E (2015) Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles. Surf Coatings Technol 270:66–76. CrossRefGoogle Scholar
  32. Stuparu MC, Khan A (2016) Thiol-epoxy “click” chemistry: application in preparation and postpolymerization modification of polymers. J Polym Sci Part A Polym Chem 54:3057–3070. CrossRefGoogle Scholar
  33. Subedi B, Balakrishna K, Sinha RK, Yamashita N, Balasubramanian VG, Kannan K (2015) Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J Environ Chem Eng 3:2882–2891. CrossRefGoogle Scholar
  34. Sun W, Ma G, Sun Y, Liu Y, Song N, Xu Y, Zheng H (2017) Effective treatment of high phosphorus pharmaceutical wastewater by chemical precipitation. Can J Chem Eng 9999:1–9. CrossRefGoogle Scholar
  35. Tiringer U, Milošev I, Durán A, Castro Y (2018) Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO2and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6. J Sol-Gel Sci Technol 85:546–557. CrossRefGoogle Scholar
  36. Zhang Y, Shen S, Wang S et al (2014) A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution. Chem Eng J 239:250–256. CrossRefGoogle Scholar
  37. Zhang Y, Wang S, Shen S, Zhao B (2013a) A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chem Eng J 233:258–264. CrossRefGoogle Scholar
  38. Zhang Z, Liu Y, Yao G, Zu G, Hao Y (2013b) Synthesis and characterization of NiFe2O4 nanoparticles via solid-state reaction. Int J Appl Ceram Technol 10:142–149. CrossRefGoogle Scholar
  39. Zhou CG, Gao Q, Wang S, Gong YS, Xia KS, Han B, Li M, Ling Y (2016a) Remarkable performance of magnetized chitosan-decorated lignocellulose fiber towards biosorptive removal of acidic azo colorant from aqueous environment. React Funct Polym 100:97–106. CrossRefGoogle Scholar
  40. Zhou Y, Ping T, Maitlo I, Wang B (2016b) Regional selective construction of nano-Au on Fe3O4 @ SiO2@ PEI nanoparticles by photoreduction. Nanotechnology 27:1–9. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Smitha Chandrashekar Kollarahithlu
    • 1
  • Raj Mohan Balakrishnan
    • 1
    Email author
  1. 1.Department of Chemical EngineeringNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations