Environmental Science and Pollution Research

, Volume 25, Issue 34, pp 34228–34235 | Cite as

Magnesium depletion suppresses the anti-grazer colony formation in Scenedesmus obliquus

  • Xinying Hou
  • Qiming Zhou
  • Zeshuang Wang
  • Qingdan Kong
  • Yunfei Sun
  • Lu Zhang
  • Xuexia ZhuEmail author
  • Yuan HuangEmail author
  • Zhou Yang
Research Article


In aquatic ecosystems, many phytoplankton species have evolved various inducible defense mechanisms against the predation. The expression of these defenses is affected by environmental conditions such as nutrient availability. Here, we investigated the anti-grazer colony formation in Scenedesmus obliquus at different magnesium concentrations (0–7.3 mg L−1 Mg2+) in the presence of zooplankton (Daphnia)-derived infochemicals. Results showed that at adequate Mg2+, S. obliquus formed high proportions of multi-celled (e.g., four- and eight-celled) colonies, resulting in significantly increased number of cells per colony in response to Daphnia filtrate. On the other hand, in Mg2+-deficient treatment, the proportion of multi-celled colonies decreased, together with reduced algal growth rate and photosynthetic efficiency. Finally, the treatment without Mg2+ strongly suppressed the formation of large colony (mainly eight-celled colonies), whereas the algal growth rate was comparable to that in Mg2+ sufficient treatment. Despite the inhibition of colony formation, the time reaching the maximum number of cells per colony was not affected by the Mg2+ concentration, which generally took three days in all groups. Our results indicate that Mg2+ deficient/absent environments significantly reduced anti-grazing colony formation but not the algal growth, suggesting strong dependability of this morphological defensive trait to magnesium fluctuation in S. obliquus.


Cells per colony Colony formation Morphological defense Magnesium depletion Population growth 



We greatly appreciate the two anonymous reviewers for their constructive comments.

Funding information

This study was supported by the National Natural Science Foundation of China (31470508), Natural Science Youth Foundation of Jiangsu Province (BK20150972), “333 High Concentration Talent Project” in Jiangsu Province (BRA2017452), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K (2016) Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy 88:126–134CrossRefGoogle Scholar
  2. Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M (2016) Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant 38:145CrossRefGoogle Scholar
  3. Hansson M, Lundqvist J, Sirijovski N, Al-Karadaghi S, Subunits IMC (2014) Magnesium chelatase: the molecular motor of chlorophyll biosynthesis. Science 28:41–84Google Scholar
  4. Hessen DO, Van Donk E (1993) Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch Hydrobiol 127:129–129Google Scholar
  5. Huang Y, Nan HH, Zhu XX, Li BP, Zhang Z, Yang Z (2016) Waterborne copper impairs grazer-induced colony formation and photosynthetic efficiency in Scenedesmus obliquus. Limnol Oceanogr 61:625–634CrossRefGoogle Scholar
  6. Huang Y, Cui GL, Li BP, Zhu XX, Yang Z (2018) Elevated atmospheric CO2 enhances grazer-induced morphological defense in the freshwater green alga Scenedesmus obliquus. Limnol Oceanogr 63:1004–1014CrossRefGoogle Scholar
  7. Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298CrossRefGoogle Scholar
  8. Kiørboe T (1993) Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1–72Google Scholar
  9. Kiørboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–339CrossRefGoogle Scholar
  10. Knoop V, Groth-Malonek M, Gebert M, Eifler K, Weyand K (2005) Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Gen Genomics 274:205–216CrossRefGoogle Scholar
  11. Kobayashi NI, Saito T, Iwata N, Ohmae Y, Iwata R, Tanoi K, Nakanishi TM (2013) Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol Plantarum 148:490–501CrossRefGoogle Scholar
  12. Lampert W, Rothhaupt KO, Von Elert E (1994) Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol Oceanogr 39: 1543–1550CrossRefGoogle Scholar
  13. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 4:142–196Google Scholar
  14. Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME (2007) Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. P Natl Acad Sci USA 104:10512–10517CrossRefGoogle Scholar
  15. Lürling M (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann Limnol -Int J Lim 39:85–101CrossRefGoogle Scholar
  16. Lürling M, Van Donk E (1996) Zooplankton-induced unicell-colony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia. Oecologia 108:432–437CrossRefGoogle Scholar
  17. Lürling M, Van Donk E (1997) Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol Oceanogr 42:783–788CrossRefGoogle Scholar
  18. Lürling M, Van Donk E (1999) Grazer-induced colony formation in Scenedesmus acutus (Chlorophyceae): ecomorph expression at different temperatures. J Phycol 35:1120–1126CrossRefGoogle Scholar
  19. Lürling M, Van Donk E (2000) Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88:111–118CrossRefGoogle Scholar
  20. Lürling M, De Lange HJ, Van Donk E (1997) Changes in food quality of the green alga Scenedesmus induced by Daphnia infochemicals: biochemical composition and morphology. Freshw Biol 38:619–628CrossRefGoogle Scholar
  21. Mayeli SM, Nandini S, Sarma SSS (2005) The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans. Aquat Ecol 38:515–524CrossRefGoogle Scholar
  22. Mengel K, Kirkby EA (1978) Principles of plant nutrition. International Potash Institutes, BernGoogle Scholar
  23. O'Donnell DR, Fey SB, Cottingham KL (2012) Nutrient availability influences kairomone-induced defenses in Scenedesmus acutus (Chlorophyceae). J Plankton Res 35:191–200CrossRefGoogle Scholar
  24. Pan Y, Liu C, Li F, Zhou CQ, Yan SW, Dong JY, Li TR, Duan CQ (2017) Norfloxacin disrupts Daphnia magna-induced colony formation in Scenedesmus quadricauda and facilitates grazing. Ecol Eng 102:255–261CrossRefGoogle Scholar
  25. Pančić M, Kiørboe T (2018) Phytoplankton defence mechanisms: traits and trade-offs. Biol Rev 93:1269–1303CrossRefGoogle Scholar
  26. Ploug H, Stolte W, Epping E, Jorgensen BB (1999) Diffusive boundary layers, photosynthesis, and respiration of the colony-forming plankton algae, Phaeocystis sp. Limnol Oceanogr 44:1949–1958CrossRefGoogle Scholar
  27. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:307–321CrossRefGoogle Scholar
  28. Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–558CrossRefGoogle Scholar
  29. Tang KW (2003) Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J Plankton Res 25:831–842CrossRefGoogle Scholar
  30. Tang N, Li Y, Chen LS (2012) Magnesium deficiency–induced impairment of photosynthesis in leaves of fruiting Citrus reticulata trees accompanied by up-regulation of antioxidant metabolism to avoid photo-oxidative damage. J Plant Nutr Soil Sci 175:784–793CrossRefGoogle Scholar
  31. Thornton D (2002) Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol 37:149–161CrossRefGoogle Scholar
  32. Van Donk E, Ianora A, Vos M (2011) Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668(1):3–19Google Scholar
  33. Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368:87–99CrossRefGoogle Scholar
  34. Wu XY, Zhang J, Qin BL, Cui GL, Yang Z (2013) Grazer density-dependent response of induced colony formation of Scenedesmus obliquus to grazing-associated infochemicals. Biochem Syst Ecol 50:286–292CrossRefGoogle Scholar
  35. Yang Z, Kong FX (2012) Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. J Limnol 71:61–66CrossRefGoogle Scholar
  36. Yang Z, Kong FX, Shi XL, Xing P, Zhang M (2007) Effects of Daphnia-associated infochemicals on the morphology, polysaccharides content and PSII-efficiency in Scenedesmus obliquus. Int Rev Hydrobiol 92:618–625CrossRefGoogle Scholar
  37. Yang Z, Kong FX, Shi XL, Zhang M, Xing P, Cao HS (2008) Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. J Phycol 44:716–720CrossRefGoogle Scholar
  38. Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees 26:1237–1250CrossRefGoogle Scholar
  39. Yang JW, Li BP, Zhang CW, Luo HX, Yang Z (2016) pH-associated changes in induced colony formation and growth of Scenedesmus obliquus. Fund Appl Limnol 187:241–246CrossRefGoogle Scholar
  40. Yasumoto K, Nishigami A, Kasai F, Kusumi T, Ooi T (2006) Isolation and absolute configuration determination of aliphatic sulfates as the Daphnia kairomones inducing morphological defense of a phytoplankton. Chem Pharm Bull 54:271–274CrossRefGoogle Scholar
  41. Yasumoto K, Nishigami A, Aoi H, Tsuchihashi C, Kasai F, Kusumi T, Ooi T (2008) Isolation of new aliphatic sulfates and sulfamate as the Daphnia kairomones inducing morphological change of a phytoplankton Scenedesmus gutwinskii. Chem Pharm Bull 56:133–136CrossRefGoogle Scholar
  42. Zhu XX, Wang J, Lu YC, Chen QW, Yang Z (2015a) Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa. Sci Rep 5:12743CrossRefGoogle Scholar
  43. Zhu XX, Wu XY, Zhang L, Zhu C, Yang Z (2015b) Response of grazer-induced colony formation of Scenedesmus obliquus in relation to grazer’s size. Fund Appl Limnol 186:243–248CrossRefGoogle Scholar
  44. Zhu XX, Yang JW, Xu N, Chen G, Yang Z (2015c) Combined effects of nitrogen concentrations and Daphnia culture filtrate on colony size of Scenedesmus obliquus. Algal Res 9:94–98CrossRefGoogle Scholar
  45. Zhu XX, Wang J, Chen QW, Chen G, Huang Y, Yang Z (2016) Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource. Sci Rep 6:22594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xinying Hou
    • 1
  • Qiming Zhou
    • 1
  • Zeshuang Wang
    • 1
  • Qingdan Kong
    • 1
  • Yunfei Sun
    • 1
  • Lu Zhang
    • 1
  • Xuexia Zhu
    • 2
    Email author
  • Yuan Huang
    • 1
    Email author
  • Zhou Yang
    • 1
  1. 1.Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological SciencesNanjing Normal UniversityNanjingChina
  2. 2.Department of Marine Biology, College of OceanographyHohai UniversityNanjingChina

Personalised recommendations