Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 31250–31261 | Cite as

Synthesis of mesoporous core-shell TiO2 microstructures with coexposed {001}/{101} facets: enhanced intrinsic photocatalytic performance

  • Liang Wang
  • Yingjuan Xie
  • Wenxiu Liu
  • Qi Wang
  • Wenbin CaoEmail author
Research Article


TiO2 microstructures were synthesized via a facile one-step route for enhanced intrinsic photocatalytic performance. The prepared TiO2 microstructures are featured by both mesoporous core-shell structures and coexposed {001}/{101} facets. Their intrinsic photocatalytic performance were remarkably enhanced due to their high specific surface area, coexposed {001}/{101} facets, and promoted separation of photogenerated carriers. Furthermore, the origin and detailed mechanism for diethylenetriamine (DETA) that served as a high efficient stabilizer of TiO2 {001} facet have been theoretically investigated. Finally, a new DETA-modified Ostwald ripening mechanism was originally proposed when studying the growth mechanism of the mesoporous core-shell TiO2 spherical microstructures with coexposed {001}/{101} facets.


TiO2 {001} facets Core-shell Mesoporous Photocatalytic 


Funding information

This work was financially supported by The National Key Research and Development Program of China (Grant. No: 2016YFC0700901, 2016YFC0700607) and the Project of BZZ14J001.

Supplementary material

11356_2018_3113_MOESM1_ESM.docx (15.2 mb)
ESM 1 (DOCX 15552 kb)


  1. Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Formation of titania nanotubes with high photo-catalytic activity. Chem Lett 29:942–943CrossRefGoogle Scholar
  2. Baquero F, Martínez J-L, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265CrossRefGoogle Scholar
  3. Cai QY, Paulose, Varghese OK, Grimes CA (2011) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236CrossRefGoogle Scholar
  4. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019CrossRefGoogle Scholar
  5. Chen Q, Zhou WZ, Du GH, Peng LM (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211CrossRefGoogle Scholar
  6. Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746CrossRefGoogle Scholar
  7. Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010a) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRefGoogle Scholar
  8. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH (2010b) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3:244–255CrossRefGoogle Scholar
  9. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol−gel process. J Phys Chem B 107:6586–6589CrossRefGoogle Scholar
  10. Diebold U, Ruzycki N, Herman GS, Selloni A (2003) One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal Today 85:93–100CrossRefGoogle Scholar
  11. Dozzi MV, Selli E (2013) Specific facets-dominated anatase TiO2: fluorine-mediated synthesis and photoactivity. Catalysts 3:455–485CrossRefGoogle Scholar
  12. Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109:19560–19562CrossRefGoogle Scholar
  13. Gong XQ, Selloni A, Batzill M, Diebold U (2006) Steps on anatase TiO2(101). Nat Mater 5:665–670CrossRefGoogle Scholar
  14. He HY (2008) Catalytic and photocatalytic activity of ZnCr2O4 particles synthesised using metallo-organic precursor. Mater Technol 23:110–113CrossRefGoogle Scholar
  15. He HY (2016) Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous Mesoporous Mater 227:31–38CrossRefGoogle Scholar
  16. He HY, Huang JF, Cao LY, Wu JP (2010) Photodegradation of methyl orange aqueous on MnWO4 powder under different light resources and initial pH. Desalination 252:66–70CrossRefGoogle Scholar
  17. Jung JH, Kobayashi H, Van Bommel KJC, Seiji S, Shimizu T (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447CrossRefGoogle Scholar
  18. Lai Z, Peng F, Wang Y, Wang H, Yu H, Liu P, Zhao H (2012) Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. J Mater Chem 22:23906–23912CrossRefGoogle Scholar
  19. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409CrossRefGoogle Scholar
  20. Li J, Xu D (2010) Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets. Chem Commun 46:2301–2303CrossRefGoogle Scholar
  21. Li J, Shao Z, Chen C, Wang X (2014) Hierarchical GOs/Fe3O4/PANI magnetic composites as adsorbent for ionic dye pollution treatment. RSC Adv 4:38192–38198CrossRefGoogle Scholar
  22. Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J Am Chem Soc 132:11914–11916CrossRefGoogle Scholar
  23. Liu L, Gu X, Sun C, Li H, Deng Y, Gao F, Dong L (2012) In situ loading of ultra-small Cu2O particles on TiO2 nanosheets to enhance the visible-light photoactivity. Nanoscale 4:6351–6359CrossRefGoogle Scholar
  24. Liu C, Han X, Xie S, Kuang Q, Wang X, Jin M, Xie Z, Zheng L (2013) Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes. Chem Asian J 8:282–289CrossRefGoogle Scholar
  25. Liu X, Dong G, Li S, Lu G, Bi Y (2016) Direct observation of charge separation on anatase TiO2 crystals with selectively etched {001} facets. J Am Chem Soc 138:2917–2920CrossRefGoogle Scholar
  26. Michailowski A, AlMawlawi D, Cheng G, Moskovits M (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5CrossRefGoogle Scholar
  27. Nguyen CK, Cha HG, Kang YS (2011) Axis-oriented, anatase TiO2 single crystals with dominant {001} and {100} facets. Cryst Growth Des 11:3947–3953CrossRefGoogle Scholar
  28. Pan JH, Zhang X, Du AJ, Sun DD, Leckie JO (2008) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257CrossRefGoogle Scholar
  29. Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) Porous photocatalysts for advanced water purifications. J Mater Chem 20:4512–4528CrossRefGoogle Scholar
  30. Pan J, Liu G, Lu GQ, Cheng H-M (2011) On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137CrossRefGoogle Scholar
  31. Pan L, Zou J-J, Wang S, Huang Z-F, Yu A, Wang L, Zhang X (2013) Quantum dot self-decorated TiO 2 nanosheets. Chem Commun 49:6593–6595CrossRefGoogle Scholar
  32. Pan JH, Wang XZ, Huang Q, Shen C, Koh ZY, Wang Q, Engel A, Bahnemann DW (2014) Large-scale synthesis of urchin-like mesoporous TiO2 hollow spheres by targeted etching and their photoelectrochemical properties. Adv Funct Mater 24:95–104CrossRefGoogle Scholar
  33. Pinheiro GK, Serpa RB, Souza LV, Saetorelli ML, Reis FT, Rambo CR (2017) Increasing incident photon to current efficiency of perovskite solar cells through TiO2 aerogel-based nanostructured layers. Colloids Surf A Physicochem Eng Asp 527:89–94CrossRefGoogle Scholar
  34. Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 7:2532–2540CrossRefGoogle Scholar
  35. Roy N, Park Y, Sohn Y, Leung KT, Pradhan D (2014) Green synthesis of anatase TiO2 nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity. ACS Appl Mater Interfaces 6:16498–16507CrossRefGoogle Scholar
  36. Sacco O, Vaiano V, Daniel C, Navarra W, Venditto V (2018) Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels. Mater Sci Semicond Process 80:104–110CrossRefGoogle Scholar
  37. Sajan CP, Wageh S, Al-Ghamdi AA, Yu J, Cao S (2016) TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res 9:3–27CrossRefGoogle Scholar
  38. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008CrossRefGoogle Scholar
  39. Selloni A (2008) Crystal growth - Anatase shows its reactive side. Nat Mater 7:613–615CrossRefGoogle Scholar
  40. Sharma MP, Kumari VD, Subrahmanyam M (2008) TiO2 supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 73:1562–1569CrossRefGoogle Scholar
  41. Tachikawa T, Wang N, Yamashita S, Cui S-C, Majima T (2010) Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew Chem Int Ed 49:8593–8597CrossRefGoogle Scholar
  42. Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133:7197–7204CrossRefGoogle Scholar
  43. Tian ZR, Voigt JA, Liu J, Mckenzie B, Xu HF (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385CrossRefGoogle Scholar
  44. Wang CY, Bottcher C, Bahnemann DW, Dohrmann JK (2003) A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J Mater Chem 13:2322–2329CrossRefGoogle Scholar
  45. Wang H, Wu Z, Liu Y (2009) A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. J Phys Chem C 113:13317–13324CrossRefGoogle Scholar
  46. Wu B, Guo C, Zheng N, Xie Z, Stucky GD (2008) Nonaqueous production of nanostructured anatase with high-energy facets. J Am Chem Soc 130:17563–17567CrossRefGoogle Scholar
  47. Wulff G (1901) Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Z Krist-Cryst Mater 34:449–530Google Scholar
  48. Xiang Q, Yu J (2011) Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant {001} facets. Chin J Catal 32:525–531CrossRefGoogle Scholar
  49. Xiang Q, Yu J, Jaroniec M (2011a) Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem Commun 47:4532–4534CrossRefGoogle Scholar
  50. Xiang Q, Yu J, Jaroniec M (2011b) Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13:4853–4861CrossRefGoogle Scholar
  51. Xiao S, Zhu W, Liu P, Liu F, Dai W, Zhang D, Chen W, Li H (2016) CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation. Nanoscale 8:2899–2907CrossRefGoogle Scholar
  52. Xue C, Wang T, Yang G, Yang B, Ding S (2014) A facile strategy for the synthesis of hierarchical TiO2/CdS hollow sphere heterostructures with excellent visible light activity. J Mater Chem A 2:7674–7679CrossRefGoogle Scholar
  53. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  54. Yang W, Li J, Wang Y, Zhu F, Shi W, Wan F, Xu D (2011) A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem Commun 47:1809–1811CrossRefGoogle Scholar
  55. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136:8839–8842CrossRefGoogle Scholar
  56. Zeng Y, Li B, Ma W, Zhou K, Fan H, Wang H (2011) Discussion on current pollution status and legislation of environmental hormone in China. Procedia Environ Sci 11:1267–1277CrossRefGoogle Scholar
  57. Zhang D, Li G, Yang X, Yu JC (2009) A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem Commun 0:4381–4383Google Scholar
  58. Zhang D, Li G, Wang H, Chan KM, Yu JC (2010) Biocompatible anatase single-crystal Photocatalysts with tunable percentage of reactive facets. Cryst Growth Des 10:1130–1137CrossRefGoogle Scholar
  59. Zhao Z, Sun Z, Zhao H, Zheng M, Du P, Zhao J, Fan H (2012) Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J Mater Chem 22:21965–21971CrossRefGoogle Scholar
  60. Zheng Z, Huang B, Lu J, Qin X, Zhang X, Dai Y (2011) Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. Chem Eur J 17:15032–15038CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Wang
    • 1
  • Yingjuan Xie
    • 1
  • Wenxiu Liu
    • 1
  • Qi Wang
    • 1
  • Wenbin Cao
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations