Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30680–30695 | Cite as

Rarasaponin-bentonite-activated biochar from durian shells composite for removal of crystal violet and Cr(VI) from aqueous solution

  • Livy Laysandra
  • Felix Harijaya Santosa
  • Vic Austen
  • Felycia Edi Soetaredjo
  • Kuncoro Foe
  • Jindrayani Nyoo Putro
  • Yi-Hsu Ju
  • Suryadi Ismadji
Research Article
  • 75 Downloads

Abstract

This paper presents the preparation of composite material and its application for the adsorption of crystal violet and Cr(VI) from aqueous solution onto acid-activated bentonite (AAB) and rarasaponin–bentonite-activated biochar from durian shells composite (RBAB). The influence of initial pH of the solution and the temperature of adsorption on the adsorbents adsorption performance was also studied. Langmuir and Freundlich models could represent the adsorption equilibria equally well. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° were evaluated based on the adsorption isotherms. The values of ∆G°, ∆H°, and ∆S° for crystal violet adsorption system demonstrate behavior contrary to the Cr(VI) adsorption system. Where crystal violet adsorption is preferred at high temperatures with qmax, value is 518.64 mg/L; while adsorption Cr(VI) is better at low temperature with qmax, value is 106.30 mg/L. Pseudo-first-order and pseudo-second-order kinetic models could represent the kinetic data well.

Keywords

Rarasaponin Raw durian Biochar Composite Isotherms Kinetics Adsorption 

Notes

Funding

Financial support is from the Ministry of Research and Technology and Higher Education through competency grant 2018.

Supplementary material

11356_2018_3104_MOESM1_ESM.docx (405 kb)
ESM 1 (DOCX 404 kb)

References

  1. Abdel S, Monem A, Ahmed M et al (2012) Adsorption studies on the removal of hexavalent chromium-contaminated wastewater using activated carbon and bentonite. Chem J 2:95–105Google Scholar
  2. Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773.  https://doi.org/10.1016/j.jhazmat.2009.06.060 CrossRefGoogle Scholar
  3. Akar ST, Yetimoglu Y, Gedikbey T (2009) Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification. Desalination 244:97–108.  https://doi.org/10.1016/j.desal.2008.04.040 CrossRefGoogle Scholar
  4. Albadarin AB, Mangwandi C, Al-Muhtaseb AH et al (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J 179:193–202.  https://doi.org/10.1016/j.cej.2011.10.080 CrossRefGoogle Scholar
  5. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23.  https://doi.org/10.1016/j.dyepig.2007.03.001 CrossRefGoogle Scholar
  6. Aljeboree AM (2016) Adsorption of crystal violet dye by Fugas sawdust from aqueous solution. Int J ChemTech Res 9:412–423Google Scholar
  7. Anirudhan TS, Ramachandran M (2007) Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters. Appl Clay Sci 35:276–281.  https://doi.org/10.1016/j.clay.2006.09.009 CrossRefGoogle Scholar
  8. Arslan G, Pehlivan E (2007) Batch removal of chromium(VI) from aqueous solution by Turkish brown coals. Bioresour Technol 98:2836–2845.  https://doi.org/10.1016/j.biortech.2006.09.041 CrossRefGoogle Scholar
  9. Babel S, Kurniawan TA (2004) Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54:951–967.  https://doi.org/10.1016/j.chemosphere.2003.10.001 CrossRefGoogle Scholar
  10. Barkat M, Chegrouche S, Mellah A, Bensmain B, Nibou D, Boufatit M (2014) Application of Algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions. J Surf Eng Mater Adv Technol 4:210–226.  https://doi.org/10.4236/jsemat.2014.44024 CrossRefGoogle Scholar
  11. Barkat M, Nibou D, Chegrouche S, Mellah A (2009) Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chem Eng Process Process Intensif 48:38–47.  https://doi.org/10.1016/j.cep.2007.10.004 CrossRefGoogle Scholar
  12. Bayrak Y, Yesiloglu Y, Gecgel U (2006) Adsorption behavior of Cr(VI) on activated hazelnut shell ash and activated bentonite. Microporous Mesoporous Mater 91:107–110.  https://doi.org/10.1016/j.micromeso.2005.11.010 CrossRefGoogle Scholar
  13. Bhattacharyya KG, Sen GS (2006) Adsorption of chromium(VI) from water by clays. Ind Eng Chem Res 45:7232–7240.  https://doi.org/10.1021/ie060586j CrossRefGoogle Scholar
  14. Chakraborty S, Chowdhury S, Das SP (2012) Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder. Appl Water Sci 2:135–141.  https://doi.org/10.1007/s13201-012-0030-9 CrossRefGoogle Scholar
  15. Chandra I, Ju Y, Ayucitra A, Ismadji S (2013) Evans blue removal from wastewater by rarasaponin-bentonite. Int J Environ Sci Technol 10:359–370CrossRefGoogle Scholar
  16. Chandra TC, Mirna MM, Sunarso J, Sudaryanto Y, Ismadji S (2009) Activated carbon from durian shell: preparation and characterization. J Taiwan Inst Chem Eng 40:457–462.  https://doi.org/10.1016/j.jtice.2008.10.002 CrossRefGoogle Scholar
  17. Chen T, Zhou Z, Xu S, Wang H, Lu W (2015) Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour Technol 190:388–394.  https://doi.org/10.1016/j.biortech.2015.04.115 CrossRefGoogle Scholar
  18. Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884.  https://doi.org/10.1016/j.biortech.2011.06.078 CrossRefGoogle Scholar
  19. Cieslak-Golonka M (1995) Toxic report and mutagenic effects of chromium(VI) a review. Polyhedron 15:3667–3689.  https://doi.org/10.1016/0277-5387(96)00141-6 1996CrossRefGoogle Scholar
  20. Coelho GF, Gonçalves AC Jr, Tarley CRT et al (2014) Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L. Ecol Eng 73:514–525.  https://doi.org/10.1016/j.ecoleng.2014.09.103 CrossRefGoogle Scholar
  21. Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G (2017) Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 332:79–86.  https://doi.org/10.1016/j.jhazmat.2017.03.002 CrossRefGoogle Scholar
  22. Eren E, Afsin B (2008) An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study. J Hazard Mater 151:682–691.  https://doi.org/10.1016/j.jhazmat.2007.06.040 CrossRefGoogle Scholar
  23. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645.  https://doi.org/10.1016/j.jhazmat.2008.06.042 CrossRefGoogle Scholar
  24. Gan C, Liu Y, Tan X, Wang S, Zeng G, Zheng B, Li T, Jiang Z, Liu W (2015) Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Adv 5:35107–35115.  https://doi.org/10.1039/c5ra04416b CrossRefGoogle Scholar
  25. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223.  https://doi.org/10.1021/i160018a011 CrossRefGoogle Scholar
  26. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465.  https://doi.org/10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  27. Hu QH, Qiao SZ, Haghseresht F, Wilson MA, Lu GQ (2006) Adsorption study for removal of basic red dye using bentonite. Ind Eng Chem Res 45:733–738.  https://doi.org/10.1021/ie050889y CrossRefGoogle Scholar
  28. Huang X, Liu Y, Liu S, Tan X, Ding Y, Zeng G, Zhou Y, Zhang M, Wang S, Zheng B (2016) Effective removal of Cr(VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Adv 6:94–104.  https://doi.org/10.1039/C5RA22886G CrossRefGoogle Scholar
  29. Hyder AHMG, Begum SA, Egiebor NO (2015) Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J Environ Chem Eng 3:1329–1336.  https://doi.org/10.1016/j.jece.2014.12.005 CrossRefGoogle Scholar
  30. Jian-min R, Si-wei W, Wei J (2010) Adsorption of crystal violet onto BTEA- and CTMA-bentonite from aqueous solutions. World Acad Sci Eng Technol 41:790–795Google Scholar
  31. Karapinar N, Donat R (2009) Adsorption behaviour of Cu2+and Cd2+onto natural bentonite. Desalination 249:123–129.  https://doi.org/10.1016/j.desal.2008.12.046 CrossRefGoogle Scholar
  32. Kumar R, Bishnoi NR, Garima BK (2008) Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208.  https://doi.org/10.1016/j.cej.2007.03.004 CrossRefGoogle Scholar
  33. Kumar R, Singh R, Kumar N, Bishnoi K, Bishnoi NR (2009) Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem Eng J 146:401–407.  https://doi.org/10.1016/j.cej.2008.06.020 CrossRefGoogle Scholar
  34. Kurniawan A, Kosasih AN, Febrianto J, Ju YH, Sunarso J, Indraswati N, Ismadji S (2011a) Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: equilibrium, kinetics, thermodynamics and mechanism. Chem Eng J 172:158–166CrossRefGoogle Scholar
  35. Kurniawan A, Sutiono H, Ju YH, Soetaredjo FE, Ayucitra A, Yudha A, Ismadji S (2011b) Utilization of rarasaponin natural surfactant for organo-bentonite preparation: application for methylene blue removal from aqueous effluent. Microporous Mesoporous Mater 142:184–193.  https://doi.org/10.1016/j.micromeso.2010.11.032 CrossRefGoogle Scholar
  36. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403.  https://doi.org/10.1021/ja02242a004 CrossRefGoogle Scholar
  37. Liu Q, Yang B, Zhang L, Huang R (2015) Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite. Korean J Chem Eng 32:1314–1322.  https://doi.org/10.1007/s11814-014-0339-1 CrossRefGoogle Scholar
  38. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215–1221.  https://doi.org/10.1016/S0008-6223(98)00317-0 CrossRefGoogle Scholar
  39. Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interf Sci 82:43–92.  https://doi.org/10.1016/S0001-8686(99)00005-6 CrossRefGoogle Scholar
  40. Merino D, Ollier R, Lanfranconi M, Alvarez V (2016) Preparation and characterization of soy lecithin-modified bentonites. Appl Clay Sci 128:17–22.  https://doi.org/10.1016/j.clay.2016.04.006 CrossRefGoogle Scholar
  41. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473.  https://doi.org/10.1016/j.jcis.2009.11.060 CrossRefGoogle Scholar
  42. Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811.  https://doi.org/10.1016/j.jhazmat.2006.06.060 CrossRefGoogle Scholar
  43. Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU Jr (2011) Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent. J Hazard Mater 188:319–333.  https://doi.org/10.1016/j.jhazmat.2011.01.127 CrossRefGoogle Scholar
  44. Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135:280–295.  https://doi.org/10.1016/j.jhazmat.2005.11.075 CrossRefGoogle Scholar
  45. Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4chemical activation: pore structure and surface chemistry characterization. Chem Eng J 140:32–42.  https://doi.org/10.1016/j.cej.2007.08.032 CrossRefGoogle Scholar
  46. Purkait MK, Maiti A, DasGupta S, De S (2007) Removal of Congo red using activated carbon and its regeneration. J Hazard Mater 145:287–295.  https://doi.org/10.1016/j.jhazmat.2006.11.021 CrossRefGoogle Scholar
  47. Qurie M, Khamis M, Manassra A, Ayyad I, Nir S, Scrano L, Bufo SA, Karaman R (2013) Removal of Cr (VI) from aqueous environments using micelle-clay adsorption. Sci World J 2013:1–7.  https://doi.org/10.1155/2013/942703 CrossRefGoogle Scholar
  48. Rahardjo AK, Susanto MJJ, Kurniawan A, Indraswati N, Ismadji S (2011) Modified Ponorogo bentonite for the removal of ampicillin from wastewater. J Hazard Mater 190:1001–1008.  https://doi.org/10.1016/j.jhazmat.2011.04.052 CrossRefGoogle Scholar
  49. Saha PD, Chakraborty S, Chowdhury S (2012) Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids Surfaces B Biointerfaces 92:262–270.  https://doi.org/10.1016/j.colsurfb.2011.11.057 CrossRefGoogle Scholar
  50. Sahoo C, Gupta AK, Pal A (2005) Photocatalytic degradation of crystal violet (C.I. Basic violet 3) on silver ion doped TiO2. Dyes Pigments 66:189–196.  https://doi.org/10.1016/j.dyepig.2004.09.003 CrossRefGoogle Scholar
  51. Sari A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160:349–355.  https://doi.org/10.1016/j.jhazmat.2008.03.005 CrossRefGoogle Scholar
  52. Saueprasearsit P (2011) Adsorption of chromium (Cr+6) using durian peel. 2011. Int Conf Biotechnol Environ Manag IPCBEE 18:33–38Google Scholar
  53. Sewu DD, Boakye P, Woo SH (2017) Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour Technol 224:206–213.  https://doi.org/10.1016/j.biortech.2016.11.009 CrossRefGoogle Scholar
  54. Sharma YC (2001) Adsorption of Cr (VI) onto wollastonite: effect of pH. Indian J Chem Technol 8:186–190Google Scholar
  55. Singha B, Das SK (2013) Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surfaces B Biointerfaces 107:97–106.  https://doi.org/10.1016/j.colsurfb.2013.01.060 CrossRefGoogle Scholar
  56. Weng C, Sharma YC, Chu S (2007) Adsorption of Cr (VI) from aqueous solutions by spent activated clay. J Hazard Mater 155:65–75.  https://doi.org/10.1016/j.jhazmat.2007.11.029 CrossRefGoogle Scholar
  57. Zhang W, Mao S, Chen H, Huang L, Qiu R (2013) Pb (II) and Cr (VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour Technol 147:545–552.  https://doi.org/10.1016/j.biortech.2013.08.082 CrossRefGoogle Scholar
  58. Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249.  https://doi.org/10.1016/j.cej.2012.01.095 CrossRefGoogle Scholar
  59. Zheng H, Liu D, Zheng Y, Liang S, Liu Z (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater 167:141–147.  https://doi.org/10.1016/j.jhazmat.2008.12.093 CrossRefGoogle Scholar
  60. Zhitkovich A, Quievryn G, Messer J, Motylevich Z (2002) Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI). Environ Health Perspect 110:729–731.  https://doi.org/10.1289/ehp.02110s5729 CrossRefGoogle Scholar
  61. Zhou L, Liu Y, Liu S, Yin Y, Zeng G, Tan X, Hu X, Hu X, Jiang L, Ding Y, Liu S, Huang X (2016) Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour Technol 218:351–359.  https://doi.org/10.1016/j.biortech.2016.06.102 CrossRefGoogle Scholar
  62. Zhu N, Yan T, Qiao J, Cao H (2016) Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere 164:32–40.  https://doi.org/10.1016/j.chemosphere.2016.08.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Livy Laysandra
    • 1
  • Felix Harijaya Santosa
    • 1
  • Vic Austen
    • 1
    • 2
  • Felycia Edi Soetaredjo
    • 1
  • Kuncoro Foe
    • 3
  • Jindrayani Nyoo Putro
    • 4
  • Yi-Hsu Ju
    • 5
  • Suryadi Ismadji
    • 1
  1. 1.Department of Chemical EngineeringWidya Mandala Surabaya Catholic UniversitySurabayaIndonesia
  2. 2.Intan Permata HatiSurabayaIndonesia
  3. 3.Widya Mandala Surabaya Catholic UniversitySurabayaIndonesia
  4. 4.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei CityTaiwan
  5. 5.Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei CityTaiwan

Personalised recommendations