Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4312–4323 | Cite as

A kinetic study for the Fenton and photo-Fenton paracetamol degradation in an annular photoreactor

  • Francesca Audino
  • Leandro Oscar Conte
  • Agustina Violeta Schenone
  • Montserrat Pérez-Moya
  • Moisès Graells
  • Orlando Mario AlfanoEmail author
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries
  • 55 Downloads

Abstract

A kinetic model describing Fenton and photo-Fenton degradation of paracetamol (PCT) and consumption of hydrogen peroxide (H2O2) was proposed. A set of Fenton and photo-Fenton experiments (18 runs in total) was performed by fixing the initial concentration of PCT to 40 mg L−1 and varying the initial concentrations of H2O2 and ferrous ion, Fe2+. The experimental set-up was a well-stirred annular photoreactor equipped with an actinic BL TL-DK 36 W/10 1SL lamp. Experimental results highlighted that PCT is no more detected by HPLC analysis within a minimum reaction time of 2.5 and a maximum reaction time of 15.0 min. Besides, a maximum conversion of total organic carbon (TOC) of 68.5% was observed after 75 min of reaction in case of using UV radiation and the highest concentrations of the Fenton reagents. The experimental data were used to fit the kinetic model. The radiation field inside the reactor was taken into account through the local volumetric rate of photon absorption, evaluated by assuming a line source model with spherical and isotropic emission. The kinetic parameters were estimated by using a non-linear least-squares regression procedure and root mean square errors (RMSE) were calculated in order to validate the feasibility of the proposed model. A good agreement between experimental and predicted data was observed and the lowest values of RMSE resulted in 5.84 and 9.59% for PCT and H2O2 normalized concentrations, respectively.

Keywords

AOPs Pharmaceuticals Annular photoreactor Design of experiments LVRPA Kinetic modeling 

Notes

Acknowledgements

Francesca Audino, particularly acknowledges the MINECO for the PhD grant (BES-2013-065545).

Funding information

Financial support received from the Spanish “Ministerio de Economía, Industria y Competitividad” and the European Regional Development Fund, both funding the research Project AIMS (DPI2017-87435-R) is fully acknowledged. Also, the authors acknowledge the financial support from the Universidad Nacional del Litoral (UNL, Project PIC50420150100009LI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Project PIP-2015 0100093), and Agencia Nacional de Promoción Científica y Tecnológica of Argentina (ANPCyT, Project PICT-2015-2651).

References

  1. Alfano OM, Romero RL, Cassano AE (1986) Radiation field modelling in photoreactors-I. Homogeneous media. Chem Eng Sci 41(3):421–444CrossRefGoogle Scholar
  2. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59CrossRefGoogle Scholar
  3. Andreozzi R, D’Apuzzo A, Marotta R (2000) A kinetic model for the degradation of benzothiazole by Fe3+-photo-assisted Fenton process in a completely mixed batch reactor. J Hazard Mater B 80(1–3):241–257CrossRefGoogle Scholar
  4. Antunes SC, Freitas R, Figueira E, Gonçalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environ Sci Pollut Res 20(9):6658–6666CrossRefGoogle Scholar
  5. Bossmann SH, Oliveros E, Göb S, Siegwart S, Dahlen EP, PayawanJr L, Straub M, Wörner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102(28):5542–5550CrossRefGoogle Scholar
  6. Braun AM, Jacob L, Oliveros E, OIler do Nascimento CA (2004) Up-scaling photochemical reactions. Adv Photochem 18:235–313Google Scholar
  7. Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34(8):2253–2262CrossRefGoogle Scholar
  8. Cabrera Reina A, Santos-Juanes L, García JL, Casas JL, Sánchez JS (2012) Modelling photo-Fenton process for organic matter mineralization, hydrogen peroxide consumption and dissolved oxygen evolution. Appl Catal B Environ 119-120:132–138CrossRefGoogle Scholar
  9. Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res 34(7):2155–2201CrossRefGoogle Scholar
  10. Conte LO, Farias J, Albizzati ED, Alfano OM (2012) Photo-Fenton degradation of the herbicide 2,4-dichlorophenoxyacetic acid in laboratory and solar pilot-plant reactors. Ind Eng Chem Res 51(11):4181–4191CrossRefGoogle Scholar
  11. Conte LO, Schenone AV, Alfano OM (2016) Photo-Fenton degradation of the herbicide 2,4-D in aqueous medium at pH conditions close to neutrality. J Environ Manag 170:60–39CrossRefGoogle Scholar
  12. Dalgic G, Turkdogan IF, Yetilmezsoy K, Kocak E (2017) Treatment of real paracetamol wastewater by Fenton process. Chem Ind Chem Eng Q 23(2):177–186CrossRefGoogle Scholar
  13. De Gusseme B, Vanhaecke L, Verstraete W, Boon N (2011) Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. Water Res 45(4):1829–1837CrossRefGoogle Scholar
  14. De Laurentiis E, Prasse C, Ternes TA, Minella M, Maurino V, Minero C, Sarakha M, Brigante M, Vione D (2014) Assessing the photochemical transformation pathways of acetaminophen relevant to surface waters: transformation kinetics, intermediates, and modeling. Water Res 53:235–248CrossRefGoogle Scholar
  15. DOGC núm. 3894, DECRET 130/2003, de 13/05/2003, (29.5.2003). (URL: http://www.gencat.cat/diari/3894/03127147.htm, accessed15/09/2017)
  16. Fenton HJH (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc 65:899–910CrossRefGoogle Scholar
  17. Farias J, Rossetti GH, Albizzati ED, Alfano OM (2007) Solar degradation of formic acid: temperature effects on the photo-Fenton reaction. Ind Eng Chem Res 46(23):7580–7586CrossRefGoogle Scholar
  18. Göb S, Oliveros E, Bossmann SH, Braun AM, Nascimento CA, Guardani R (2001) Optimal experimental design and artificial neural networks applied to the photochemically enhanced Fenton reaction. Water science and technology: a journal of the international association on water. Pollut Res 44(5):339–345Google Scholar
  19. ISO 6332 (1988) Water quality — Determination of iron — Spectrometric method using 1, 10-phenanthrolineGoogle Scholar
  20. Jeyong J, Yoon J (2005) pH effect on OH radical production in photo/ferrioxalate system. Water Res 39(13):2893–2900CrossRefGoogle Scholar
  21. Kang N, Dong SL, Jeyong Y (2002) Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47(9):915–924CrossRefGoogle Scholar
  22. Kiwi J, Pulgarin C, Peringer P, Gratzel M (1993) Beneficial effect of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinonesulfonate in wastewater treatment. Appl Catal B Environ 3:85–99CrossRefGoogle Scholar
  23. Kusic H, Koprivanac N, Loncaric A, Selanec I (2006) Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study. J Hazard Mater 136(3):632–644CrossRefGoogle Scholar
  24. Langford KH, Thomas KV (2009) Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ Int 35(5):766–770CrossRefGoogle Scholar
  25. Miralles-Cuevas S, Audino F, Oller I, Sánchez-Moreno R, Sánchez Pérez JA, Malato S (2014) Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Sep Purif Technol 122:515–522CrossRefGoogle Scholar
  26. Muir N, Nichols J, Stillings M, Sykes J (1997) Comparative bioavailability of aspirin and paracetamol following single dose administration of soluble and plain tablets. Curr Med Res Opin 13(9):491–500CrossRefGoogle Scholar
  27. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Dekker, New YorkGoogle Scholar
  28. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66(1):86–91CrossRefGoogle Scholar
  29. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166CrossRefGoogle Scholar
  30. Ortiz de la Plata GB, Alfano OM, Cassano AE (2010) Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions. Appl Catal B Environ 95(1–2):1–13CrossRefGoogle Scholar
  31. Pérez-Moya M, Graells M, Buenestado P, Mansilla HD (2008) A comparative study on the empirical modeling of photo-Fenton treatment process performance. Appl Catal B Environ 84(1–2):313–323CrossRefGoogle Scholar
  32. Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84CrossRefGoogle Scholar
  33. Pouran SR, Aziz ARA, Mohd W, Wan A (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69CrossRefGoogle Scholar
  34. Pulgarin C, Kiwi J (1996) Overview on photocatalytic and electrocatalytic pretreatment of industrial non-biodegradable pollutants and pesticides. CHIMIA Int J Chem 50(3):50–55Google Scholar
  35. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51CrossRefGoogle Scholar
  36. Roshanfekr Rad L, Irani M, Divsar F, Pourahmad H, Sadegh Sayyafan M, Haririan I (2015) Simultaneous degradation of phenol and paracetamol during photo-Fenton process: design and optimization. J Taiwan Inst Chem Eng 47:190–196CrossRefGoogle Scholar
  37. Shokry A, Audino F, Vicente P, Escudero G, Graells M, Pérez-Moya M, Espuña A (2015) Proceedings of 12th PSE and 25th ESCAPE joint event, Copenhagen, DenmarkGoogle Scholar
  38. Simunovic M, Kusic H, Koprivanac N, Loncaric Bozic A (2011) Treatment of simulated industrial wastewater by photo-Fenton process: part II. The development of mechanistic model. Chem Eng J 173(2):280–289CrossRefGoogle Scholar
  39. Sun Y, Pignatello JJ (1993a) Photochemical reactions in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ Sci Technol 27(2):304–310CrossRefGoogle Scholar
  40. Sun Y, Pignatello JJ (1993b) Organic intermediates in the degradation of 2,4-dichlorophenoxyacetic acid by Fe3+/H2O2 and Fe3+/H2O2/UV. J Agric Food Chem 41(7):1139–1142CrossRefGoogle Scholar
  41. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260CrossRefGoogle Scholar
  42. Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4(1):762–787CrossRefGoogle Scholar
  43. Yamal-Turbay OE, Conte LO, Graells M, Mansilla HD, Alfano OM, Pérez-Moya M (2014) Photonic efficiency of the photodegradation of paracetamol in water by the photo-Fenton process. Environ Sci Pollut Res 22(2):938–945CrossRefGoogle Scholar
  44. Zapata A, Oller I, Rizzo L, Hilgert S, Maldonado MI, Sánchez-Pérez JA, Malato S (2010) Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: interdependence of initial pollutant concentration, temperature and iron concentration. Appl Catal B 97(1–2):292–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francesca Audino
    • 1
  • Leandro Oscar Conte
    • 2
  • Agustina Violeta Schenone
    • 2
  • Montserrat Pérez-Moya
    • 1
  • Moisès Graells
    • 1
  • Orlando Mario Alfano
    • 2
    Email author
  1. 1.Chemical Engineering DepartmentUniversitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est (EEBE)BarcelonaSpain
  2. 2.Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (UNL)Santa FeArgentina

Personalised recommendations