Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 31017–31030 | Cite as

Plankton community assessment in anthropogenic-impacted oligotrophic coastal regions

  • John K. Pearman
  • Fidan Afandi
  • Peiying Hong
  • Susana Carvalho
Research Article

Abstract

Microbial planktonic communities are critical components of marine biogeochemical pathways. Despite this, there is still limited knowledge on the dynamics of this group in warm and oligotrophic waters. We used high-throughput sequencing to characterise the bacterial (16S rRNA) and eukaryotic (18S rRNA) microbial plankton communities in two regions under the influence of anthropogenic impacts (a port and sewage outflow) and a coastal region with no direct anthropogenic disturbances in the central Red Sea. Overall, bacterial and eukaryotic components responded in a similar way to the environmental conditions. Community composition and structure were more sensitive than alpha diversity measures to environmental impacts. With the exception of eukaryotes, for which the number of OTU differed significantly between sampling periods in all the regions, environmental changes associated with anthropogenic pressures seem to be better reflected by variations in the relative dominance of microbial groups. For example, elevated proportional abundances of nitrifying and sewage-/faecal-related bacteria at the impacted sites were observed compared with the coastal region. The recently developed microgAMBI also appeared to correlate well with the level of anthropogenic impact the regions experienced, showing the potential to be applied in oligotrophic waters.

Keywords

Plankton Red Sea Sewage Prokaryotes Eukaryotes microgAMBI Amplicon sequencing 

Notes

Acknowledgements

The authors would like to thank Richard Payumo, Saskia Kürten and various members of the Coastal & Marine Resources Core Lab for their help in collecting the samples. Further, the authors would like to express their thanks to Saskia Kürten and Pedro Ruiz Compean for their help with the nutrient analysis. The authors would also like to extend their gratitude to Ute Langner for her work in producing the maps used in this manuscript. We would also like to express our gratitude to the reviewers for their insightful comments, which improved this manuscript.

Funding information

JKP and SC are funded by the Saudi Aramco/KAUST Center for Marine Environmental Observations. The funding source had no involvement in the design, undertaking or analysis of this study.

Supplementary material

11356_2018_3072_MOESM1_ESM.xlsx (38 kb)
Table S1 (XLSX 37 kb)
11356_2018_3072_MOESM2_ESM.xlsx (13 kb)
Table S2 (XLSX 12 kb)
11356_2018_3072_MOESM3_ESM.xlsx (35 kb)
Table S3 (XLSX 35 kb)
11356_2018_3072_MOESM4_ESM.xlsx (39 kb)
Table S4 (XLSX 38 kb)
11356_2018_3072_MOESM5_ESM.csv (1 kb)
Table S5 (CSV 1 kb)
11356_2018_3072_MOESM6_ESM.xlsx (52 kb)
Table S6 (XLSX 51 kb)

References

  1. Abu-Zied RH, Al-Dubai TAM, Bantan RA (2016) Environmental conditions of shallow waters alongside the souther corniche of Jeddah based on benthic foraminifera, physio-chemical parameters and heavy metals. J Foraminiferal Research 46 (2):149–170CrossRefGoogle Scholar
  2. Al-Farawati R (2010) Environmental conditions of the coastal waters of Southern Corinche Jeddah, Eastern red sea: Physico-chemical approach. Aust J Basic Appl Sci 4:3324–3337Google Scholar
  3. Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for primer: guide to software and statistical methods. Primer-E Limited,Google Scholar
  4. Aylagas E, Borja Á, Tangherlini M, Dell'Anno A, Corinaldesi C, Michell CT, Irigoien X, Danovaro R, Rodríguez-Ezpeleta N (2017) A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Mar Pollut Bull 114:679–688CrossRefGoogle Scholar
  5. Basaham A, Rifaat A, El-Mamoney M, El Sayed M (2009) Re-evaluation of the impact of sewage disposal on coastal sediments of the Southern Corniche, Jeddah, Saudi Arabia. Journal of King Abdulaziz University, Marine Sciences 20:109–126CrossRefGoogle Scholar
  6. Borja A (2018) Testing the efficiency of a bacterial community-based index (microgAMBI) to assess distinct impact sources in six locations around the world. Ecol Indic 85:594–602CrossRefGoogle Scholar
  7. Borja A, Franco J, Perez V (2000) A Marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pollut Bull 40:1100–1114CrossRefGoogle Scholar
  8. Caporaso JG et al (2010) QIIME allows analysis of high throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  9. Carugati L, Corinaldesi C, Dell'Anno A, Danovaro R (2015) Metagenetic tools for the census of marine meiofaunal biodiversity: An overview. Mar Genomics 24:11–20CrossRefGoogle Scholar
  10. Caruso G, la Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, de Angelis R, del Negro P, Latini M, Danovaro R (2016) Microbial assemblages for environmental quality assessment: knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 42:883–904.  https://doi.org/10.3109/1040841X.2015.1087380 CrossRefGoogle Scholar
  11. Carvalho S, Barata M, Pereira F, Gaspar MB, da Fonseca LC, Pousão-Ferreira P (2006) Distribution patterns of macrobenthic species in relation to organic enrichment within aquaculture earthen ponds. Mar Pollut Bull 52:1573–1584CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2006) PRIMER V6: user manual-tutorial. Plymouth Marine LaboratoryGoogle Scholar
  13. Closek CJ, Sunagawa S, DeSalvo MK, Piceno YM, DeSantis TZ, Brodie EL, Weber MX, Voolstra CR, Andersen GL, Medina M (2014) Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata. The ISME journal 8:2411–2422CrossRefGoogle Scholar
  14. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.  https://doi.org/10.1126/science.1261605 CrossRefGoogle Scholar
  15. Demers S, Therriault JC, Bourget E, Bah A (1987) Resuspension in the shallow sublittoral zone of a macrotidal estuarine environment: wind influence. Limnol Oceanogr 32:327–339CrossRefGoogle Scholar
  16. Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132CrossRefGoogle Scholar
  17. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefGoogle Scholar
  18. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefGoogle Scholar
  19. El-Rayis OA, Moammar MO (1998) Environmental conditions of two Red Sea coastal lagoons in Jeddah: 1. Hydrochemistry. Journal King Abdulaziz University Earth Science 9:31–47Google Scholar
  20. Estrada M (1991) Phytoplankton assemblages across a NW Mediterranean front: changes from winter mixing to spring stratification. Oecologia aquatica 10:157–185Google Scholar
  21. Estrada M et al. (2016) Phytoplankton across tropical and subtropical regions of the Atlantic, Indian and Pacific oceans PLOS ONE 11  https://doi.org/10.1371/journal10.1371/journal.pone.0151699
  22. Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, Cardoso da Silva M, Garcés E, Heiskanen AS, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2011) Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar Coast Shelf Sci 93:117–131.  https://doi.org/10.1016/j.ecss.2011.03.014 CrossRefGoogle Scholar
  23. Findlay HS (2006) Modelling of autumn plankton bloom dynamics. J Plankton Res 28:209–220.  https://doi.org/10.1093/plankt/fbi114 CrossRefGoogle Scholar
  24. Frouin P (2000) Effects of anthropogenic disturbances of tropical soft-bottom benthic communities. Mar Ecol Prog Ser 194:39–53CrossRefGoogle Scholar
  25. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146CrossRefGoogle Scholar
  26. Furnas M, Mitchell A, Skuza M, Brodie J (2005) In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar Pollut Bull 51:253–265.  https://doi.org/10.1016/j.marpolbul.2004.11.010 CrossRefGoogle Scholar
  27. Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308.  https://doi.org/10.1038/ismej.2011.107 CrossRefGoogle Scholar
  28. Glibert P (2016) Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55:25–30CrossRefGoogle Scholar
  29. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2012) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604CrossRefGoogle Scholar
  30. Hargrave B, Phillips G, Doucette L, White M, Milligan T, Wildish D, Cranston R (1997) Assessing benthic impacts of organic enrichment from marine aquaculture. In: The interactions between sediments and water. Springer, pp 641–650Google Scholar
  31. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Gloeckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies Nucleic Acids Res 41  https://doi.org/10.1093/nar/gks808 CrossRefGoogle Scholar
  32. Lallias D, Hiddink JG, Fonseca VG, Gaspar JM, Sung W, Neill SP, Barnes N, Ferrero T, Hall N, Lambshead PJD, Packer M, Thomas WK, Creer S (2015) Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. The ISME journal 9:1208–1221CrossRefGoogle Scholar
  33. Lapointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308:23–58CrossRefGoogle Scholar
  34. Lugoli F, Garmendia M, Lehtinen S, Kauppila P, Moncheva S, Revilla M, Roselli L, Slabakova N, Valencia V, Dromph KM, Basset A (2012) Application of a new multi-metric phytoplankton index to the assessment of ecological status in marine and transitional waters. Ecol Indic 23:338–355CrossRefGoogle Scholar
  35. Malham SK, Rajko-Nenow P, Howlett E, Tuson KE, Perkins TL, Pallett DW, Wang H, Jago CF, Jones DL, McDonald JE (2014) The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters. Environ Sci Process Impacts 16:2145–2155.  https://doi.org/10.1039/c4em00031e CrossRefGoogle Scholar
  36. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O, Kooistra WHCF, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–4049.  https://doi.org/10.1111/1462-2920.12955 CrossRefGoogle Scholar
  37. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217.  https://doi.org/10.1371/journal.pone.0061217 CrossRefGoogle Scholar
  38. Newton RJ, Bootsma MJ, Morrison HG, Sogin ML, McLellan SL (2013) A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol 65:1011–1023CrossRefGoogle Scholar
  39. Nogales B, Lanfranconi MP, Pina-Villalonga JM, Bosch R (2011) Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 35:275–298.  https://doi.org/10.1111/j.1574-6976.2010.00248.x CrossRefGoogle Scholar
  40. Park H-D, Lee S-Y, Hwang S (2009) Redundancy analysis demonstration of the relevance of temperature to ammonia-oxidizing bacterial community compositions in a full-scale nitrifying bioreactor treating saline wastewater. J Microbiol Biotechnol 19:346–350.  https://doi.org/10.4014/jmb.0806.399 CrossRefGoogle Scholar
  41. Pastorok RA, Bilyard GR (1985) Effects of sewage pollution on coral-reef communities. Mar Ecol Prog Ser 21(1):175–189CrossRefGoogle Scholar
  42. Pearman J, Kurten S, Sarma YVB, Jones B, Carvalho S (2016) Biodiversity patterns of plankton assemblages at the extremes of the Red Sea FEMS Microbiol Ecol 92  https://doi.org/10.1093/femsec/fiw002 CrossRefGoogle Scholar
  43. Pearman JK, Ellis J, Irigoien X, Sarma Y, Jones BH, Carvalho S (2017) Microbial planktonic communities in the Red Sea: high levels of spatial and temporal variability shaped by nutrient availability and turbulence. Sci Rep 7:6611CrossRefGoogle Scholar
  44. Peña-García D, Ladwig N, Turki AJ, Mudarris MS (2014) Input and dispersion of nutrients from the Jeddah Metropolitan Area, Red Sea. Mar Pollut Bull 80:41–51CrossRefGoogle Scholar
  45. Piló D, Pereira F, Carriço A, Curdia J, Pereira P, Gaspar M, Carvalho S (2015) Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic assemblages along a gradient of metal contamination. Estuar Coast Shelf Sci 167:286–299CrossRefGoogle Scholar
  46. Primpas I, Karydis M (2011) Scaling the trophic index (TRIX) in oligotrophic marine environments. Environ Monit Assess 178:257–269CrossRefGoogle Scholar
  47. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gloeckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196.  https://doi.org/10.1093/nar/gkm864 CrossRefGoogle Scholar
  48. Sanchez O, Ferrera I, Gonzalez JM, Mas J (2013) Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. Microb Biotechnol 6:435–442.  https://doi.org/10.1111/1751-7915.12052 CrossRefGoogle Scholar
  49. Santo Domingo JW, Rice EW (2009) Detection of microbial water quality indicators and fecal waterborne pathogens in environmental waters: a review of methods, Appl Limitations  https://doi.org/10.1002/9780470027318.a9053
  50. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/aem.01541-09 CrossRefGoogle Scholar
  51. Simonato F, Gomez-Pereira PR, Fuchs BM, Amann R (2010) Bacterioplankton diversity and community composition in the Southern Lagoon of Venice. Syst Appl Microbiol 33:128–138.  https://doi.org/10.1016/j.syapm.2009.12.006 CrossRefGoogle Scholar
  52. Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31.  https://doi.org/10.1111/j.1365-294X.2009.04480.x CrossRefGoogle Scholar
  53. Strong JA, Andonegi E, Bizsel KC, Danovaro R, Elliott M, Franco A, Garces E, Little S, Mazik K, Moncheva S, Papadopoulou N, Patrício J, Queirós AM, Smith C, Stefanova K, Solaun O (2015) Marine biodiversity and ecosystem function relationships: the potential for practical monitoring applications. Estuar Coast Shelf Sci 161:46–64CrossRefGoogle Scholar
  54. Team RC (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, p 2014Google Scholar
  55. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  56. Wear SL, Thurber RV (2015) Sewage pollution: mitigation is key for coral reef stewardship. Ann N Y Acad Sci 1355:15–30CrossRefGoogle Scholar
  57. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer,Google Scholar
  58. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7:e38183.  https://doi.org/10.1371/journal.pone.0038183 CrossRefGoogle Scholar
  59. Zalack JT, Smucker NJ, Vis ML (2010) Development of a diatom index of biotic integrity for acid mine drainage impacted streams. Ecol Indic 10:287–295CrossRefGoogle Scholar
  60. Zhang R, Liu B, Lau SC, Ki JS, Qian PY (2007) Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol 61:496–508.  https://doi.org/10.1111/j.1574-6941.2007.00353.x CrossRefGoogle Scholar
  61. Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull 105:629–640CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.Bioecology Department, Ecology and Soil ScienceBaku State UniversityBakuAzerbaijan
  3. 3.Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations