Advertisement

Future intensification of summer hypoxia in the tidal Garonne River (SW France) simulated by a coupled hydro sedimentary-biogeochemical model

  • Katixa Lajaunie-Salla
  • Aldo Sottolichio
  • Sabine Schmidt
  • Xavier Litrico
  • Guillaume Binet
  • Gwenaël Abril
Review Article

Abstract

Projections for the next 50 years predict a widespread distribution of hypoxic zones in the open and coastal ocean due to environmental and global changes. The Tidal Garonne River (SW France) has already experienced few episodic hypoxic events. However, predicted future climate and demographic changes suggest that summer hypoxia could become more severe and even permanent near the city of Bordeaux in the next few decades. A 3D model, which couples hydrodynamic, sediment transport, and biogeochemical processes, is applied to assess the impact of factors submitted to global and regional climate changes on oxygenation in the turbidity maximum zone (TMZ) of the Tidal Garonne River during low-discharge periods. The model simulates an intensification of summer hypoxia with an increase in temperature, a decrease in river flow or an increase in the local population, but not with sea level rise, which has a negligible impact on dissolved oxygen. Different scenarios were tested by combining these different factors according to the regional projections for 2050 and 2100. All the simulations showed a trend toward a spatial and temporal extension of summer hypoxia that needs to be considered by local water authorities to impose management strategies to protect the ecosystem.

Keywords

Future changes Hypoxia Modeling Tidal Garonne river Wastewater Water quality 

Abbreviations

DO

dissolved oxygen

DOC

dissolved organic carbon

OM

organic matter

POC

particulate organic carbon

SSC

suspended sediment concentration

SO

sewage overflow

TGR

Tidal Garonne River

TMZ

turbidity maximum zone

WS

watershed

WW

wastewater

WWTP

wastewater treatment plant

Notes

Acknowledgments

The authors are grateful to the MAGEST network for the availability of data and to the SGAC and Bordeaux Metropole for providing urban effluent data and fruitful discussions.

Funding information

This study was funded by the Aquitaine Region (DIAGIR project) and LyRE (SUEZ research center) who co-sponsored a PhD grant to K. Lajaunie-Salla. This work was also supported by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45). This work was supported by the Avakas cluster resources of the Mésocentre de Calcul Intensif Aquitain (MCIA) of the University of Bordeaux.

References

  1. Abril G, Etcheber H, Le Hir P et al (1999) Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (the Gironde, France). Limnol Oceanogr 44:1304–1315CrossRefGoogle Scholar
  2. Allen GP (1972) Étude des processus sédimentaires dans l’estuaire de la Gironde. Université de Bordeaux, BordeauxGoogle Scholar
  3. Allen GP, Salomon J, Bassoullet P (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26:69–90CrossRefGoogle Scholar
  4. Ambrose RB, Wool TA, Martin JL (1993) The water quality analysis simulation program, WASP5 part A: model documentation. Development Protection Agency, United States Environmental Protection Agency, AthensGoogle Scholar
  5. Boé J, Habets F (2014) Multi-decadal river flow variations in France. 691–708.  https://doi.org/10.5194/hess-18-691-2014 CrossRefGoogle Scholar
  6. Brenon I, Hir P Le (1999) Modelling the turbidity maximum in the seine estuary ( France ): identification of formation. 525–544.Google Scholar
  7. Cocco V, Joos F, Steinacher M, Frölicher TL, Bopp L, Dunne J, Gehlen M, Heinze C, Orr J, Oschlies A, Schneider B, Segschneider J, Tjiputra J (2013) Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10:1849–1868.  https://doi.org/10.5194/bg-10-1849-2013 CrossRefGoogle Scholar
  8. Conley DJ, Carstensen J, Vaquer-Sunyer R, Duarte CM (2009) Ecosystem thresholds with hypoxia. Hydrobiologia 629:21–29.  https://doi.org/10.1007/s10750-009-9764-2 CrossRefGoogle Scholar
  9. Cotovicz LC, Knoppers BA, Brandini N et al (2017) Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay-Brazil). Mar Pollut Bull 129:0–1.  https://doi.org/10.1016/j.marpolbul.2017.10.064 CrossRefGoogle Scholar
  10. Cox TJS, Maris T, Soetaert K, Conley DJ, van Damme S, Meire P, Middelburg JJ, Vos M, Struyf E (2009) A macro-tidal freshwater ecosystem recovering from hypereutrophication: the Schelde case study. Biogeosciences 6:2935–2948.  https://doi.org/10.5194/bg-6-2935-2009 CrossRefGoogle Scholar
  11. Cugier P, Le Hir P (2002) Development of a 3D hydrodynamic model for coastal ecosystem modelling. Application to the plume of the Seine River (France). Estuar Coast Shelf Sci 55:673–695.  https://doi.org/10.1006/ecss.2001.0875 CrossRefGoogle Scholar
  12. de Jonge VN, Elliott M, Orive E (2002) Causes , historical development , effects and future challenges of a common environmental problem : eutrophication. In: 1–19Google Scholar
  13. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science (80- ) 321:926–929.  https://doi.org/10.1126/science.1156401 CrossRefGoogle Scholar
  14. Dronkers J (1986) Tidal asymmetry and estuarine morphology. Netherlands J Sea Res 20:117–131.  https://doi.org/10.1016/0077-7579(86)90036-0 CrossRefGoogle Scholar
  15. Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc 48:689–733CrossRefGoogle Scholar
  16. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  17. Etcheber H, Taillez A, Abril G, Garnier J, Servais P, Moatar F, Commarieu MV (2007) Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia 588:245–259.  https://doi.org/10.1007/s10750-007-0667-9 CrossRefGoogle Scholar
  18. Etcheber H, Schmidt S, Sottolichio A, Maneux E, Chabaux G, Escalier JM, Wennekes H, Derriennic H, Schmeltz M, Quéméner L, Repecaud M, Woerther P, Castaing P (2011) Monitoring water quality in estuarine environments: lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system. Hydrol Earth Syst Sci 15:831–840.  https://doi.org/10.5194/hess-15-831-2011 CrossRefGoogle Scholar
  19. Etcheber H, Coupry B, Coynel A et al (2013) Disponibility of surficial continental waters. In: Le Treut H (ed) Impact of climate change in the Aquitaine region. Scientific report., resses Uni. Pessac, p 365Google Scholar
  20. Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545.  https://doi.org/10.1016/0272-7714(88)90082-0 CrossRefGoogle Scholar
  21. Gilbert D, Rabalais NN, Díaz RJ, Zhang J (2010) Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:2283–2296.  https://doi.org/10.5194/bg-7-2283-2010 CrossRefGoogle Scholar
  22. Goosen NK, Kromkamp J, Peene J, van Rijswijk P, van Breugel P (1999) Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde. J Mar Syst 22:151–171CrossRefGoogle Scholar
  23. Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27:634–658.  https://doi.org/10.1007/BF02907650 CrossRefGoogle Scholar
  24. Howarth RW, Swaney DP, Butler TJ, Marino R (2000) Rapid communication: climatic control on eutrophication of the Hudson river estuary. Ecosystems 3:210–215.  https://doi.org/10.1007/s100210000020 CrossRefGoogle Scholar
  25. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26.  https://doi.org/10.1890/100008 CrossRefGoogle Scholar
  26. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 1535Google Scholar
  27. Jalón-Rojas I, Schmidt S, Sottolichio A (2015) Turbidity in the fluvial Gironde estuary (Southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions. Hydrol Earth Syst Sci 19:2805–2819.  https://doi.org/10.5194/hess-19-2805-2015 CrossRefGoogle Scholar
  28. Jalón-Rojas I, Sottolichio A, Hanquiez V, Fort A, Schmidt S (2018) To what extent multidecadal changes in morphology and fluvial discharge impact tide in a convergent (turbid) tidal river. J Geophys Res Oceans 123:3241–3258.  https://doi.org/10.1002/2017JC013466 CrossRefGoogle Scholar
  29. Justić D, Bierman VJ Jr, Scavia D, Hetland RD (2007) Forecasting gulf’s hypoxia : the next 50 years ? Estuar Coasts 30:791–801CrossRefGoogle Scholar
  30. Kemp WM, Testa JM, Conley DJ, Gilbert D, Hagy JD (2009) Coastal hypoxia responses to remediation. Biogeosci Discuss 6:6889–6948.  https://doi.org/10.5194/bgd-6-6889-2009 CrossRefGoogle Scholar
  31. Lajaunie-Salla K, Wild-Allen K, Sottolichio A, Thouvenin B, Litrico X, Abril G (2017) Impact of urban effluents on summer hypoxia in the highly turbid Gironde estuary , applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes. J Mar Syst 174:89–105.  https://doi.org/10.1016/j.jmarsys.2017.05.009 CrossRefGoogle Scholar
  32. Lanoux A, Etcheber H, Schmidt S, Sottolichio A, Chabaud G, Richard M, Abril G (2013) Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France). Environ Sci Process Impacts 15:585–595.  https://doi.org/10.1039/c2em30874f CrossRefGoogle Scholar
  33. Lanoux A, Lepage M, DeWatteville J, Jatteau P, Schmidt S, Sottolichio A (2014) Effects of hypoxia on the fish and crustacean fauna in the Gironde Estuary. In: The 46th International Liege Colloquium, Liege, Belgium.  https://doi.org/10.13140/2.1.1172.4165
  34. Le Treut H (2013) Impact of climate change in the Aquitaine region. Scientific Report., Presses Un. PessacGoogle Scholar
  35. Lehmann A, Hinrichsen HH, Getzlaff K, Myrberg K (2014) Quantifying the heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a simplified coupled hydrodynamic-oxygen consumption model approach. J Mar Syst 134:20–28.  https://doi.org/10.1016/j.jmarsys.2014.02.012 CrossRefGoogle Scholar
  36. Lemaire E, Abril G, De Wit R, Etcheber H (2002) Effet de la turbidité sur la dégradation des pigments phytoplanctoniques dans l’estuaire de la Gironde. Geoscience 334:251–258CrossRefGoogle Scholar
  37. Li D, Zhang J, Huang D et al (2002) Oxygen depletion off the Changjiang (Yangtze River) estuary. Sci China Ser D 45:1137.  https://doi.org/10.1360/02yd9110 CrossRefGoogle Scholar
  38. Meire L, Soetaert KER, Meysman FJR (2013) Impact of global change on coastal oxygen dynamics and risk of hypoxia. 2633–2653.  https://doi.org/10.5194/bg-10-2633-2013 CrossRefGoogle Scholar
  39. Naqvi SWA, Bange HW, Farías L, Monteiro PMS, Scranton MI, Zhang J (2010) Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7:2159–2190.  https://doi.org/10.5194/bg-7-2159-2010 CrossRefGoogle Scholar
  40. Peña M, Katsev S, Oguz T, Gilbert D (2010) Modeling dissolved oxygen dynamics and coastal hypoxia: a review. Biogeosciences 6:9195–9256.  https://doi.org/10.5194/bgd-6-9195-2009 CrossRefGoogle Scholar
  41. Rabalais NN, Levin LA, Turner RE et al (2010) Dynamics and distribution of natural and human-caused coastal hypoxia. Biogeosciences 7:585–619.  https://doi.org/10.5194/bgd-6-9359-2009 CrossRefGoogle Scholar
  42. Robins PE, Skov MW, Lewis MJ, Giménez L, Davies AG, Malham SK, Neill SP, McDonald JE, Whitton TA, Jackson SE, Jago CF (2016) Impact of climate change on UK estuaries: a review of past trends and potential projections. Estuar Coast Shelf Sci 169:119–135.  https://doi.org/10.1016/j.ecss.2015.12.016 CrossRefGoogle Scholar
  43. Schmidt S, Etcheber H, Sottolichio A, Castaing P (2016) Le réseau MAGEST: bilan de 10 ans de suivi haute-fréquence de la qualité des eaux de l’estuaire de la Gironde. In: Schmitt FG, Lefevre A (eds) Mesures haute résolution dans l’environnement marin côtier. Presses du CNRSGoogle Scholar
  44. Schmidt S, Bernard C, Escalier J-M, Etcheber H, Lamouroux M (2017) Assessing and managing the risks of hypoxia in transitional waters: a case study in the tidal Garonne River (south-West France). Environ Sci Pollut Res 24:3251–3259.  https://doi.org/10.1007/s11356-016-7654-5 CrossRefGoogle Scholar
  45. Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes. Nat Clim Chang 4:161–163.  https://doi.org/10.1038/nclimate2145 CrossRefGoogle Scholar
  46. Skerratt J, Wild-Allen K, Rizwi F, Whitehead J, Coughanowr C (2013) Use of a high resolution 3D fully coupled hydrodynamic, sediment and biogeochemical model to understand estuarine nutrient dynamics under various water quality scenarios. Ocean Coast Manag 83:52–66.  https://doi.org/10.1016/j.ocecoaman.2013.05.005 CrossRefGoogle Scholar
  47. Soetaert K, Middelburg JJ, Heip C, Meire P, van Damme S, Maris T (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, the Netherlands). Limnol Oceanogr 51:409–423CrossRefGoogle Scholar
  48. Sottolichio A, Le Hir P, Castaing P (2000) Modeling mechanisms for the stability of the turbidity maximum in the Gironde estuary, France. Proc Mar Sci 3:373–386CrossRefGoogle Scholar
  49. Talke SA, Swart HE, de Jonge VN (2009) An idealized model and systematic process study of oxygen depletion in highly turbid estuaries. Estuar Coasts 32:602–620.  https://doi.org/10.1007/s12237-009-9171-y CrossRefGoogle Scholar
  50. Testa JM, Li Y, Lee YJ, Li M, Brady DC, di Toro DM, Kemp WM, Fitzpatrick JJ (2014) Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. J Mar Syst 139:139–158.  https://doi.org/10.1016/j.jmarsys.2014.05.018 CrossRefGoogle Scholar
  51. Thouvenin B, Le Hir P, Romana LA (1994) Dissolved oxygen model in the Loire Estuary. In: Dyer KR, Orth RJ (eds) Changes in fluxes in estuaries: implications from science to management. Olsen & Olsen, Fredensburg, pp 169–178Google Scholar
  52. Tinsley D (1998) The Thames estuary: a history of the impact of humans on the environment and a description of the current approach to environmental management. In: Attrill M (ed) A rehabilitated estuarine ecosystem SE - 2. Springer US, New York, pp 5–26CrossRefGoogle Scholar
  53. Uncles RJ, Elliott RDC, Weston SA (1985) Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuar Coast Shelf Sci 20:147–167.  https://doi.org/10.1016/0272-7714(85)90035-6 CrossRefGoogle Scholar
  54. Van Maanen B, Sottolichio A (2018) Hydro- and sediment dynamics in the Gironde estuary (France): sensitivity to seasonal variations in river inflow and sea level rise. Cont Shelf Res 165:37–50.  https://doi.org/10.1016/j.csr.2018.06.001 CrossRefGoogle Scholar
  55. Vanderborght J-P, Folmer IM, Aguilera DR, Uhrenholdt T, Regnier P (2007) Reactive-transport modelling of C, N, and O2 in a river–estuarine–coastal zone system: application to the Scheldt estuary. Mar Chem 106:92–110.  https://doi.org/10.1016/j.marchem.2006.06.006 CrossRefGoogle Scholar
  56. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105:15452–15457.  https://doi.org/10.1073/pnas.0803833105 CrossRefGoogle Scholar
  57. Veyssy E (1998) Transferts de matière organiques das bassins versants aux estuaires de la Gironde et de l’Adour (Sud-Ouest de la France). Université de Bordeaux, BordeauxGoogle Scholar
  58. Wild-Allen K, Herzfeld M, Thompson P a, Thompson PA, Rosebrock U, Parslow J, Volkman JK (2009) Applied coastal biogeochemical modelling to quantify the environmental impact of fish farm nutrients and inform managers. J Mar Syst 81:134–147.  https://doi.org/10.1016/j.jmarsys.2009.12.013 CrossRefGoogle Scholar
  59. Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313CrossRefGoogle Scholar
  60. Winterwerp JC, Wang ZB, van Braeckel A, et al (2013) Man-induced regime shifts in small estuaries---II: a comparison of rivers. Ocean Dyn 63:1293–1306.  https://doi.org/10.1007/s10236-013-0663-8 CrossRefGoogle Scholar
  61. Zhao W, Zhu X, Sun X, Shu Y, Li Y (2015) Water quality changes in response to urban expansion: spatially varying relations and determinants. Environ Sci Pollut Res 22:16997–17011.  https://doi.org/10.1007/s11356-015-4795-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katixa Lajaunie-Salla
    • 1
    • 2
    • 3
  • Aldo Sottolichio
    • 1
  • Sabine Schmidt
    • 1
  • Xavier Litrico
    • 2
  • Guillaume Binet
    • 2
  • Gwenaël Abril
    • 1
    • 4
    • 5
  1. 1.Laboratoire EPOC, UMR CNRS 5805Université de BordeauxPessacFrance
  2. 2.LyRESUEZ Research CenterBordeauxFrance
  3. 3.Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110MarseilleFrance
  4. 4.Departamento de GeoquímicaUniversidade Federal FluminenseNiteróiBrazil
  5. 5.Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations