Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30410–30424 | Cite as

Pseudallescheria boydii and Meyerozyma guilliermondii: behavior of deteriogenic fungi during simulated storage of diesel, biodiesel, and B10 blend in Brazil

  • Gabriela Boelter
  • Juciana Clarice Cazarolli
  • Sabrina Anderson Beker
  • Patrícia Dörr de Quadros
  • Camila Correa
  • Marco Flôres Ferrão
  • Carolina Faganello Galeazzi
  • Tânia Mara Pizzolato
  • Fátima Menezes Bento
Research Article

Abstract

Due to their renewable and sustainable nature, biodiesel blends boost studies predicting their stability during storage. Besides chemical degradation, biodiesel is more susceptible to biodegradation due to its raw composition. The aim of this work was to evaluate the deteriogenic potential (growth and degradation) of Pseudallescheria boydii and Meyerozyma guilliermondii in degrading pure diesel (B0), pure biodiesel (B100), and a B10 blend in mineral medium during storage. The biodeterioration susceptibility at different fuel ratios and in BH minimal mineral medium were evaluated. The biomass measurements of P. boydii during 45 days indicated higher biomass production in the B10 blend. The growth curve of M. guilliermondii showed similar growth in B10 and B100. Although there was no significant production of biosurfactant, lipase production was detected in the tributyrin agar medium of both microorganisms. The main compounds identified in the aqueous phase by GC-MS were alcohols, esters, acids, sulfur, ketones, and phenols. The results showed that P. boydii grew at the expense of fuels, degrading biodiesel esters, and diesel hydrocarbons. M. guilliermondii grew in B100 and B10; however, degradation was not detected.

Keywords

Biomass B10 Nuclear magnetic resonance Gas chromatography mass spectrometry Fungal degradation Biodeterioration 

Notes

Acknowledgements

The authors wish to thank LAB-BIO/UFRGS, Chemistry Institute/UFRGS, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the funds provided during the course of this study.

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agência Nacional do Petróleo Gás Natural e Biocombustíveis - ANP (BRASIL) (2016) Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis. ANP, Rio de Janeiro, p 265Google Scholar
  2. Aktas DF, Lee JS, Little BJ, Ray RI, Davidova IA, Lyles CN, Suflita JM (2010) Anaerobic metabolismo of biodiesel and its impact on metal corrosion. Energy Fuel 24(5):2924–2928CrossRefGoogle Scholar
  3. Aktas DF, Lee JS, Little BJ, Duncan KE, Perez-Ibarra BM, Suflita JM (2013) Effects of oxygen on biodegradation of fuels in a corroding environment. Int Biodeterior Biodegrad 81:114–126CrossRefGoogle Scholar
  4. American Society for Testing Materials ASTM D4176-04 (2014) Standard test methods for free water particulate contamination in distillate fuels (visual inspection procedures). ASTM International, West ConshohockenGoogle Scholar
  5. Banat IM, Marchant R, Rahman TJ (2004) Geobacillusdebilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol 54:2197–2201CrossRefGoogle Scholar
  6. Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeterior Biodegrad 47:107–112CrossRefGoogle Scholar
  7. Bento FM, Englert GE, Gaylarde CC, Muller IL (2004) Influence of aqueous phase on electrochemical biocorrosion tests in diesel/water systems. Mater Corros 55:577–585CrossRefGoogle Scholar
  8. Bento FM, Beech IB, Gaylarde CC, Englert GE, Muller IL (2005) Degradation and corrosive activities of fungi in a diesel–mild steel–aqueous system. World J Microbiol Biotechnol 21(2):135–142CrossRefGoogle Scholar
  9. Bento FM, Bücker F, Santestevan N, Cavalcanti EHS, Zimmer A, Gaylarde C, Camargo F (2010) Impacto da adição do biodiesel ao óleo diesel durante a estocagem: Um enfoque microbiológico e controle. Revista Biodiesel, Caderno técnico 47Google Scholar
  10. Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ et al (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801CrossRefGoogle Scholar
  11. Bognolo G (1999) Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf A Physicochem Eng Asp 152(1):41–52CrossRefGoogle Scholar
  12. Bücker F, Santestevan NA, Roesch LF, Jacques RJS, Peralba MCR, Camargo FAO, Bento FM (2011) Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int Biodeterior Biodegrad 65:172–178CrossRefGoogle Scholar
  13. Bücker F, Barbosa CS, Quadros PD, Bueno MK, Fiori P, te Huang C et al (2014) Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. Int Biodeterior Biodegrad 95:346–355CrossRefGoogle Scholar
  14. Bücker F, de Moura TM, da Cunha ME, de Quadros PD, Beker SA, Cazarolli JC, Caramão EB, Frazzon APG, Bento FM (2018) Evaluation of the deteriogenic microbial community using qPCR, n-alkanes and FAMEs biodegradation in diesel, biodiesel and blends (B5, B10, and B50) during storage. Fuel.  https://doi.org/10.1016/j.fuel.2017.11.076 CrossRefGoogle Scholar
  15. Bushnell LD, Haas HFI (1941) The utilization of hydrocarbons by microorganisms. J Bacteriol 41Google Scholar
  16. Cai M, Jiménez N, Krüger M, Guo H, Jun Y, Straaten N, Richnow HH (2015) Potential for aerobic and methanogenic oil biodegradation in a water flooded oil field (Dagang oil field). Fuel 141:143–153CrossRefGoogle Scholar
  17. Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12(1):1CrossRefGoogle Scholar
  18. Cazarolli JC, Guzatto R, Samios D, Peralba MDCR, Cavalcanti EHS, Bento FM (2014) Susceptibility of linseed, soybean, and olive biodiesel to growth of the deteriogenic fungus Pseudallescheria boydii. Int Biodeterior Biodegrad 95:364–372CrossRefGoogle Scholar
  19. Cazarolli JC, de Quadros PD, Bücker F, Santiago MRF, Piatnicki CMS, Peralba MDCR et al (2016) Microbial growth in Acrocomia aculeata pulp oil, Jatropha curcas oil, and their respective biodiesels under simulated storage conditions. Biofuel Res J 3(4):514–520CrossRefGoogle Scholar
  20. Chapelle F (2001) Ground-water microbiology and geochemistry. WileyGoogle Scholar
  21. Chuck CJ, Bannister CB, Jenkins RW, Lowe JP, Davidson MG (2012) A comparison of analytical techniques and the products formed during the decomposition of biodiesel under accelerated conditions. Fuel 96:426–433CrossRefGoogle Scholar
  22. Chung YCHC, Chen YT, Shyu And JHUA (2000) Temperature and water effects on the biodeterioration for marine fuel oil. Fuel 79(12):1525–2532CrossRefGoogle Scholar
  23. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol Quebec 53(2):224–229Google Scholar
  24. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res IntGoogle Scholar
  25. De Azambuja AO, Bücker F, de Quadros PD, Zhalnina K, Dias R, Vacaro BB, Bento FM (2017) Microbial community composition in Brazilian stored diesel fuel of varying sulfur content, using high-throughput sequencing. Fuel 189:340–349CrossRefGoogle Scholar
  26. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev Washington 61(1):47–64Google Scholar
  27. Gaylarde CC, Bento FM, Kelley J (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30(1):01–10CrossRefGoogle Scholar
  28. Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12(11):3074–3086CrossRefGoogle Scholar
  29. Gopinath SCB, Anbu P, Hilda A (2005) Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 46:119–126CrossRefGoogle Scholar
  30. Gopinath SC, Anbu P, Lakshmipriya T, Hilda A(2013) Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Res IntGoogle Scholar
  31. Hill EC (1987) Microbial problems in the offshore oil industry. In: Hill EC, Shennan J, Watkinson R (eds). Wiley, London, pp 219–230Google Scholar
  32. Janda-Ulfig K, Ulfig K, Cano J, Guarro J (2008) A study of the growth of Pseudallescheria boydii isolates from sewage sludge and clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel oil. Ann Agric Environ Med 15:45–49Google Scholar
  33. Khoury RR, Ebrahimi D, Hejazi L, Bucknall MP, Pickford R, Hibbert DB (2011) Degradation of fatty acid methyl esters in biodiesels exposed to sunlight and seawater. Fuel 90(8):2677–2683CrossRefGoogle Scholar
  34. Leuchtle B, Epping L, Xie W, Eiden SJ, Koch W, Diarra D et al (2017) Defined inoculum for the investigation of microbial contaminations of liquid fuels. Int Biodeterior BiodegradGoogle Scholar
  35. Liu PWG, Chang TC, Chen CH, Wang MZ, Hsu HW (2014) Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils. Int Biodeterior Biodegrad 95:276–284CrossRefGoogle Scholar
  36. Ma C, Liu J, Zhou T, Wang C, Zeng X, Liu Z, Cheng C (2015) Study on characteristics of marine petroleum-degrading strains and their bioremediation utilization of carbon source spectrum. J Bionanosci 9(2):127–134CrossRefGoogle Scholar
  37. Mariano AP, Tomasella RC, De Oliveira LM, Contiero J, De Angelis DDF (2008) Biodegradability of diesel and biodiesel blends. Afr J Biotechnol 7(9)Google Scholar
  38. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198CrossRefGoogle Scholar
  39. Novato M, Lacerda MI (2017) RenovaBio—towards a new national biofuel policy and a truly sustainable world. Innov Energy Res 6(2):164CrossRefGoogle Scholar
  40. Parbey DG (1970) The kerosene fungus, Amorphotecaresinae; its biology, taxonomy and control. Ph.D. Thesis, University of Melbourne, AustraliaGoogle Scholar
  41. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interf Sci 138(1):24–58CrossRefGoogle Scholar
  42. Pasqualino JC, Montane D, Salvado J (2006) Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass Bioenergy 30(10):874–879CrossRefGoogle Scholar
  43. Passman FJ (2003) Fuel and fuel system microbiology: fundamentals, diagnosis and contamination control, manual 47. ASTM International, West Conshohocken, p 114CrossRefGoogle Scholar
  44. Passman FJ (2013) Int Biodeterior Biodegradation 81:88–104Google Scholar
  45. Pepper IL, Gerba CP, Gentry TJ, Maier RM (2011) Environmental microbiology. Academic Press, p 624Google Scholar
  46. Perfumo A, Smyth TJP, Marchant R, Banat IM (2009) Production and roles of biosurfactant and bioemulsifiers in accessing hydrophobic substrates. Microbiology of Hydrocarbons, Oils, Lipids and Derived Compounds, pp 1502–1512Google Scholar
  47. Pinho DM, Santos VO, dos Santos VM, Oliveira MC, da Silva MT, Piza PG et al (2014) Evaluating the use of EN 14078 for determination of biodiesel in diesel blends sold in the Brazilian market. Fuel 136:136–142CrossRefGoogle Scholar
  48. Schleicher T, Werkmeister R, Russ W, Meyer-Pittroff R (2009) Microbiological stability of biodiesel–diesel-mixtures. Bioresour Technol 100(2):724–730CrossRefGoogle Scholar
  49. Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283(23):15539–15543CrossRefGoogle Scholar
  50. Schultz FM (2010) Avaliação de microrganismos com potencial de degradação de diesel e biodiesel. Dissertation, Agriculturaland Environmental Microbiology, Universidade Federal do Rio Grande do Sul, BrazilGoogle Scholar
  51. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv Oxford 25(1):99–121CrossRefGoogle Scholar
  52. Stanley HO, Nnadozie PC, Igbogidi OE (2016) Biodeterioration of premium motor spirit and automotive gas oil by bacterial and fungal deteriogens. Am J Appl Sci Res 3(1):1–6Google Scholar
  53. Strömberg N, Saramat A, Eriksson H (2013) Biodiesel degradation rate after refueling. Fuel 105:301–305CrossRefGoogle Scholar
  54. Ulfig K, Płaza G, Worsztynowicz A, Mańko T, Terakowski M (2006) The occurrence of keratinolytic and non-keratinolytic fungi in petroleum hydrocarbon-contaminated soil in biopiles after bioremediation. Institute for Ecology of Industrial Areas, Katowice. (unpublished report)Google Scholar
  55. Yaakob Z (2014) A review on the oxidation stability of biodiesel. Renew Sust Energ Rev 35(0):136–153CrossRefGoogle Scholar
  56. Zimmer A, Cazarolli J, Teixeira RM, Viscardi SLC, Cavalcanti ESH, Gerbase AE et al (2013) Monitoring of efficacy of antimicrobial products during 60 days storage simulation of diesel (B0), biodiesel (B100) and blends (B7 and B10). Fuel 112:153–162CrossRefGoogle Scholar
  57. Zimmer AR, Oliboni A, Viscardi SL, Teixeira RM, Ferrão MF, Bento FM (2017) Biodiesel blend (B10) treated with a multifunctional additive (biocide) under simulated stored conditions: a field and lab scale monitoring. Biofuel Res J 4(2):627–636CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gabriela Boelter
    • 1
  • Juciana Clarice Cazarolli
    • 1
  • Sabrina Anderson Beker
    • 1
  • Patrícia Dörr de Quadros
    • 1
  • Camila Correa
    • 2
  • Marco Flôres Ferrão
    • 2
  • Carolina Faganello Galeazzi
    • 2
  • Tânia Mara Pizzolato
    • 2
  • Fátima Menezes Bento
    • 1
  1. 1.LABBIO Biodeterioration of Fuel and Biofuel Laboratory, Institute of Basic Health Sciences, Department of Microbiology, Immunology and ParasitologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Chemistry Institute, Department of Inorganic ChemistryUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations