Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 30847–30862 | Cite as

A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes

  • Maocai Shen
  • Yaxin Zhang
  • Duofei Hu
  • Jinshi Fan
  • Guangming Zeng
Review Article
  • 264 Downloads

Abstract

The occurrence of siloxanes is a major barrier to use of biogas as renewable energy source, and removal of siloxanes from biogas before combustion is needed. The siloxane can be transformed into silicon dioxide (SiO2) through the combustion process in engine, which will be deposited on the spark plug, cylinder, and impeller to form the silica layer, causing the wear and damage of the engine parts, and shorten the life of the engine and affect the utilization efficiency of the biogas. This paper reviewed some methods and technologies for siloxanes removal from biogas. There are three commercial available technologies to remove siloxanes: adsorption, absorption, and cryocondensation. Other newer technologies with better prospects for development also have made a research progress, including membrane, catalysts, biotrickling filters. This work introduces the source and characterization of siloxanes in biogas, reviews the scientific progress of siloxanes removal, and discusses the development direction and further research of removal siloxanes.

Keywords

Volatile methylsiloxanes Biogas Landfill gas Purification Biological technology 

References

  1. Abatzoglou N, Boivin S (2010) A review of biogas purification processes. Biofuels Bioprod Biorefin 3:42–71CrossRefGoogle Scholar
  2. Accettola F, Guebitz GM, Schoeftner R (2008) Siloxane removal from biogas by biofiltration: biodegradation studies. Clean Technol Environ 10:211–218CrossRefGoogle Scholar
  3. Ackley MW, Rege SU, Saxena H (2003) Application of natural zeolites in the purification and separation of gases. Micropor Mesopor Mat 61:25–42CrossRefGoogle Scholar
  4. Agency UKE (2004) Guidance for monitoring trace components in landfill gas. The Agency of London Presse, LondonGoogle Scholar
  5. Ajhar M, Bannwarth S, Stollenwerk KH, Spalding G, Yüce S, Wessling M, Melin T (2012) Siloxane removal using silicone—rubber membranes. Sep Purif Technol 89:234–244CrossRefGoogle Scholar
  6. Ajhar M, Melin T (2006) Siloxane removal with gas permeation membranes. Desalination 200:234–235CrossRefGoogle Scholar
  7. Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas—a technology overview. Bioresour Technol 101:2913–2923CrossRefGoogle Scholar
  8. Alba CC, Miguel A, Manuel SP, Maria J, Rafael GO (2014) Biogas upgrading: optimal activated carbon properties for siloxane removal. Environ Sci Technol 48:7187CrossRefGoogle Scholar
  9. Almenglo F, Ramírez M, Gómez JM, Cantero D, Gamisans X, Dorado AD (2016) Modeling and control strategies for anoxic biotrickling filtration in biogas purification. J Chem Technol Biot 91:1782–1793CrossRefGoogle Scholar
  10. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466CrossRefGoogle Scholar
  11. Appels L, Baeyens J, Dewil R (2008) Siloxane removal from biosolids by peroxidation. Energ Convers Manage 49:2859–2864CrossRefGoogle Scholar
  12. Arespacochaga ND, Valderrama C, Raichmontiu J, Crest M, Mehta S, Cortina JL (2015) Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas - a review. Renew Sust Energ Rev 52:366–381CrossRefGoogle Scholar
  13. Arnold M (2009) Reduction and monitoring of biogas trace compounds. https://www.vtt.fi/inf/pdf/tiedotteet/2009/T2496.pdf
  14. Barton TJ et al (1999) Tailored porous materials. Office of Scientific & Technical Information Technical Reports 11:2633–2656Google Scholar
  15. Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energ Fuel 24:4743–4747CrossRefGoogle Scholar
  16. Björklund J, Geber U, Rydberg T (2001) Emergy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. ResourConserv Recy 31:293–316CrossRefGoogle Scholar
  17. Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832CrossRefGoogle Scholar
  18. Boulinguiez B, Le CP (2009) Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth. Water SciTechnol 59:935–944Google Scholar
  19. Companioni-Damas EY, Santos FJ, Galceran MT (2014) Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. Talanta 118:245–252CrossRefGoogle Scholar
  20. Clark C, Zytner RG, McBean E (2012) Analyzing volatile organic siloxanes in landfill biogas. Can J Civil Eng 39:667–673CrossRefGoogle Scholar
  21. Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. EnergConvers Manage 47:1711–1722CrossRefGoogle Scholar
  22. Elwell AC, Elsayed NH, Kuhn JN, Joseph B (2018) Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes. Waste Manag 73:189–196CrossRefGoogle Scholar
  23. Finocchio E, Garuti G, Baldi M, Busca G (2008) Decomposition of hexamethylcyclotrisiloxane over solid oxides. Chemosphere 72:1659–1663CrossRefGoogle Scholar
  24. Finocchio E, Montanari T, Garuti G, Pistarino C, Federici F, Cugino M, Busca G (2009) Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbon sorbents. Energ Fuel 23:4156–4159CrossRefGoogle Scholar
  25. Gao R, Cheng S, Li Z (2017) Research progress of siloxane removal from biogas. Int J Agr Biol Eng 10:30–39Google Scholar
  26. Grando RL, Antune AMDS, Fonseca FVD, Sánchez A, Barrena R, Font X (2017) Technology overview of biogas production in anaerobic digestion plants: a European evaluation of research and development. Renew Sust Energ Rev 80:44–53CrossRefGoogle Scholar
  27. Griessbach EFC, Lehmann RG (1999) Degradation of polydimethylsiloxane fluids in the environment—a review. Chemosphere 38:1461–1468CrossRefGoogle Scholar
  28. Haga K, Adachi S, Shiratori Y, Itoh K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431CrossRefGoogle Scholar
  29. Hagmann M, Hesse E, Hentschel P, Bauer T (2001) Purification of biogas-removal of volatile silicones. In:ProceedingsSardinia. Eighth international waste managementand landfill symposiumlGoogle Scholar
  30. Hepburn AC (2014) Removal of siloxanes from biogas. Cranfield University, School of Energy, Envrionment and Agrifood Cranfield Water Science Institute. https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/9282/Hepburn_Caroline_Thesis_2014.pdf;jsessionid=0398063AC8D223382DAF19DAEB1EF299?sequence=1
  31. Hepburn CA, Martin BD, Simms N, McAdam EJ (2014) Characterization of full-scale carbon contactors for siloxane removal from biogas using online Fourier transform infrared spectroscopy. Environ Technol 36:178CrossRefGoogle Scholar
  32. Higgins VL (2007) Siloxane removal process: US20060225571. USGoogle Scholar
  33. Huguen P, Saux GL, Beil M, Cagnon F, Greninger A, Wellinger A, Bravin F (2010) Perspectives for a european standard on biomethane: a biogasmax proposalGoogle Scholar
  34. Huppmann R, Lohoff HW, Schröder HF (1996) Cyclic siloxanes in the biological waste water treatment process—determination, quantification and possibilities of elimination. Fresenius Journal of Analytical Chemistry 354:66–71CrossRefGoogle Scholar
  35. Kuhn JN, Elwell AC, Elsayed NH, Joseph B (2017) Requirements, techniques, and costs for contaminant removal from landfill gas. Waste Manag 63:246–256CrossRefGoogle Scholar
  36. Läntelä J, Rasi S, Lehtinen J, Rintala J (2012) Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Appl Energ 92:307–314CrossRefGoogle Scholar
  37. López ME, Rene ER, Veiga MC, Kennes C (2012) Biogas technologies and cleaning techniques. Springer, DordrechtGoogle Scholar
  38. Lee SH, Cho WI, Song TY, Kim HY, Lee WJ, Lee YC, Back Y (2001) Removal process for octamethylcyclotetrasiloxane from biogas in sewage treatment plant. J Ind Eng Chem 7:276–280Google Scholar
  39. Lehmann RG, Miller JR, Collins HP (1998a) Microbial degradation of dimethylsilanediol in soil. Water Air Soil Poll 106:111–122CrossRefGoogle Scholar
  40. Lehmann RG, Miller JR, Xu S, Singh UB, Reece CF (1998b) Degradation of silicone polymer at different soil moistures. Environ Sci Technol 32:1260–1264CrossRefGoogle Scholar
  41. Lin X, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China. Water R 47:715–724Google Scholar
  42. Madi H, Lanzini A, Diethelm S, Papurello D, van herle J, Lualdi M, Gutzon Larsen J, Santarelli M (2015) Solid oxide fuel cell anode degradation by the effect of siloxanes. J Power Sources 279:460–471CrossRefGoogle Scholar
  43. Mariné S, Pedrouzo M, Marcé RM, Fonseca I, Borrull F (2012) Comparison between sampling and analytical methods in characterization of pollutants in biogas. Talanta 100:145–152CrossRefGoogle Scholar
  44. Matsui T, Imamura S (2010) Removal of siloxane from digestion gas of sewage sludge. Bioresource Technol 101(Suppl 1):S29CrossRefGoogle Scholar
  45. Mckenna J, Mycock JC, Theodore L (1995) Handbook of air pollution control engineering and technologyGoogle Scholar
  46. Miguel GS, Lambert SD, Graham NJ (2002) Thermal regeneration of granular activated carbons using inert atmospheric conditions. Environ Technol 23:1337–1346CrossRefGoogle Scholar
  47. Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean ProdGoogle Scholar
  48. Nair N, Vas A, Zhu T, Sun W, Gutierrez J, Chen J, Egolfopoulos F, Tsotsis TT (2013) Effect of siloxanes contained in natural gas on the operation of a residential furnace. Ind Eng Chem Res 52:6253–6261CrossRefGoogle Scholar
  49. Ohannessian A, Desjardin V, Chatain V, Germain P (2008) Volatile organic silicon compounds: the most undesirable contaminants in biogases. Water Sci Technol 58:1775–1781CrossRefGoogle Scholar
  50. Piechota G, Iglin´Ski B, Buczkowski R (2013) Development of measurement techniques for determination main and hazardous components in biogas utilised for energy purposes. Energ Convers Manage 68:219–226CrossRefGoogle Scholar
  51. Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energ 87:3305–3321CrossRefGoogle Scholar
  52. Popat SC, Deshusses MA (2008) Biological removal of siloxanes from landfill and digester gases: opportunities and challenges. Environ Sci Technol 42:8510–8515CrossRefGoogle Scholar
  53. Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation—a review. Energ Convers Manage 52:3369–3375CrossRefGoogle Scholar
  54. Rasi S, Läntelä J, Veijanen A, Rintala J (2008) Landfill gas upgrading with countercurrent water wash. Waste Manag 28:1528–1534CrossRefGoogle Scholar
  55. Rossol D, Schmelz KG, Hohmann R (2003) Siloxane im faulgasGoogle Scholar
  56. Sabourin CL, Carpenter JC, Leib TK, Spivack JL (1996) Biodegradation of dimethylsilanediol in soils. Appl Environ Microb 62:4352–4360Google Scholar
  57. Sangchul N, Namkoong W, Hee KJ, Kyu PJ, Namhoon L (2013) Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test. Waste Manag 33:2091CrossRefGoogle Scholar
  58. Schweigkofler M, Niessner R (2001) Removal of siloxanes in biogases. J Hazard Mater 83:183–196CrossRefGoogle Scholar
  59. Sigot L, Ducom G, Benadda B, Labouré C (2014) Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification. Fuel 135:205–209CrossRefGoogle Scholar
  60. Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207CrossRefGoogle Scholar
  61. Soreanu G, Béland M, Falletta P, Edmonson K, Svoboda L, Al-Jamal M, Seto P (2011) Approaches concerning siloxane removal from biogas—a review. Can Biosyst Eng 53:8.1–8.18Google Scholar
  62. Soreanu G, Falletta P, Béland M, Edmonson K, Seto P (2009) Abiotic and biotic mitigation of volatile methyl siloxanes in anaerobic gas-phase biomatrices. Environ Eng Manag J 8:1235–1240CrossRefGoogle Scholar
  63. Souza SNMD, Werncke I, Marques CA, Bariccatti RA, Santos RF, Nogueira CEC, Bassegio D (2013) Electric energy micro-production in a rural property using biogas as primary source. Renew Sust Energ Rev 28:385–391CrossRefGoogle Scholar
  64. Stoddart J, Zhu M, Staines J, Rothery E, Lewicki R (1999) Experience with halogenated hydrocarbons removal from landfill gas. Proceedings Sardinia 1999. Seventh International Waste Management and Landfill Symposium 2:489–498Google Scholar
  65. Surita SC, Tansel B (2014) Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments. Sci Total Environ 468-469:46–52CrossRefGoogle Scholar
  66. Tansel B, Surita SC (2014) Oxidation of siloxanes during biogas combustion and nanotoxicity of Si-based particles released to the atmosphere. Environ Toxicol Phar 37:166–173CrossRefGoogle Scholar
  67. Tower P (2003) New technology for removal of siloxanes in digester gas results in lower maintenance costs and air quality benefits in power generation equipment. Proc Water Environ Fed 2003:440–447CrossRefGoogle Scholar
  68. Trendewicz AA, Braun RJ (2013) Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. J Power Sources 233:380–393CrossRefGoogle Scholar
  69. Urban W, Lohmann H, Gómez JIS (2009) Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells. J Power Sources 193:359–366CrossRefGoogle Scholar
  70. Wasserbauer R, Zadák Z (1990) Growth of Pseudomonas putida and P. fluorescens on silicone oils. Folia Microbiol 35:384–393CrossRefGoogle Scholar
  71. Wellinger A, Lindberg A (2001) Biogas upgrading and utilisation-IEA Bioenergy, Task 24-Energy from biological conversion of organic wasteGoogle Scholar
  72. Wheless E, Jeffrey P (2004) Siloxanes in landfill and digester gas updateGoogle Scholar
  73. Xu L, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res 47:715–724CrossRefGoogle Scholar
  74. Yang RT (2003) Adsorbents: fundamentals and applications. Belgeler Com 404Google Scholar
  75. Zhang P, Zhang G, Wang W (2007) Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresour Technol 98:207–210CrossRefGoogle Scholar
  76. Zhong W et al (2016) Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity. Micropor Mesopor Mat 239:328–335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environmental Biology and Pollution Control (Hunan University)Ministry of EducationChangshaPeople’s Republic of China

Personalised recommendations