Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30425–30440 | Cite as

Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix

  • Tatyana A. KenovaEmail author
  • Galina V. Kornienko
  • Oksana A. Golubtsova
  • Vasiliy L. Kornienko
  • Nikolay G. Maksimov
Research Article


In this work, the electrooxidation as environmentally clean technology has been studied to the degradation of Mordant Blue 13 azo dye (MB13) using boron-doped diamond (p-Si/BDD) and oxide ruthenium titanium (Ti/Ru0.3Ti0.7O2 (DSA)) anodes in various water matrices: distilled water (DW), hot tap water (HTW), and simulated wastewaters with (SWS) and without surfactant (SW). The influence of experimental parameters, such as current density, initial dye concentration, electrolysis time/specific charge, and pH on the MB13 degradation rate, current efficiency, and energy consumption, has been determined. The enhanced rate of both color and chemical oxygen demand (COD) removal in sulfate aqueous solutions with BDD was observed, which indicates that sulfate (SO4−•) radicals along with OH ones might be responsible for the degradation process. The MB13 decolorization process obeyed a pseudo-first-order reaction kinetics with the apparent rate constant from 7.36 × 10−2 min−1 to 4.39 × 10−1 min−1 for BDD and from 9.2 × 10−3 min−1 to 2.11 × 10−2 min−1 for DSA depending on the electrolysis conditions. The effect of water matrix on the decolorization and COD removal efficiency has been evaluated. Inorganic ions, mordant salt, and surfactant contained in simulated effluents decelerated the COD decay compared to DW and HTW for the both anodes; meanwhile, they differently affected the discoloration process. A comparison of the specific energy consumption for each electrocatalytic material under different experiment conditions has been made. The BDD electrode was more efficient than the DSA to oxidize the MB13 dye in all kinds of water.


Electrochemical degradation Mordant Blue 13 azo dye BDD DSA Wastewater treatment Water matrix 

Supplementary material

11356_2018_2977_MOESM1_ESM.pdf (695 kb)
ESM 1 (PDF 694 kb)


  1. Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838CrossRefGoogle Scholar
  2. Aquino JM, Rodrigo MA, Rocha-Filho RC, Sáez C, Cañizares P (2012) Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. Chem Eng J 184:221–227CrossRefGoogle Scholar
  3. Aquino JM, Rocha-Filho RC, Sáez C, Cañizares P, Rodrigo MA (2014) High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive diamond anodes. Environ Sci Pollut Res 21:8442–8450CrossRefGoogle Scholar
  4. Baddouh A, Bessegato GG, Rguiti MM, El Ibrahimi B, Bazzi L, Hilali M, Zanoni MVB (2018) Electrochemical decolorization of rhodamine B dye: influence of anode material, chloride concentrationand current density. J Environ Chem Eng 6:2041–2047CrossRefGoogle Scholar
  5. Basha CA, Sendhil JS, Kumar K, Muniswaran PKA, Lee CW (2012) Electrochemical degradation of textile dyeing industry effluent in batch and flow reactor systems. Desalination 285:188–197CrossRefGoogle Scholar
  6. Bouzayani B, Bocos E, Elaoud SC, Pazos M, Sanromán MÁ, González-Romero E (2018) An effective electroanalytical approach for the monitoring of electroactive dyes and intermediate products formed in electro-Fenton treatment. J Electroanal Chem 808:403–411CrossRefGoogle Scholar
  7. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643CrossRefGoogle Scholar
  8. Cañizares P, García-Gómez J, Lobato J, Rodrigo MA (2004) Modeling of wastewater electrooxidation processes. Part I. General description and application to inactive electrodes. Ind Eng Chem Res 43:1915–1922CrossRefGoogle Scholar
  9. Cañizares P, Sáez C, Sánchez-Carretero A, Rodrigo MA (2009) Synthesis of novel oxidants by electrochemical technology. J Appl Electrochem 39:2143–2149CrossRefGoogle Scholar
  10. Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA electrodes. Appl Catal B Environ 62:193–200CrossRefGoogle Scholar
  11. Chaiyont R, Badoe C, Ponce de León C, Nava JL, Recio FJ, Sirés I, Herrasti P, Walsh FC (2013) Decolorization of methyl orange dye at IrO2-SnO2-Sb2O5coated titanium anodes. Chem Eng Technol 36:123–129CrossRefGoogle Scholar
  12. Chaplin BP (2014) Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci Processes Impacts 16:1182–1203CrossRefGoogle Scholar
  13. Chen WS, Huang CP (2015) Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 125:175–181CrossRefGoogle Scholar
  14. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment. Electrochim Acta 39:1857–1863CrossRefGoogle Scholar
  15. Cotillas S, de Vidales MJM, Llanos J, Sáez C, Cañizares P, Rodrigo MA (2016) Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. J Hazard Mater 319:93–101CrossRefGoogle Scholar
  16. Cotillas S, Llanos J, Cañizares P, Clematis D, Cerisola G, Rodrigo MA, Panizza M (2018) Removal of Procion Red MX-5B dye from wastewater byconductive-diamond electrochemical oxidation. Electrochim Acta 263:1–7CrossRefGoogle Scholar
  17. Da Silva AJC, Dos Santos EV, Morais CCO, Martínez-Huitle CA, Castro SSL (2013) Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5 and BDD in flow reactor. Chem Eng J 233:47–55CrossRefGoogle Scholar
  18. Deborde M, Von-Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res 42:13–51CrossRefGoogle Scholar
  19. Dong Y, Chen J, Li C, Zhu H (2007) Decoloration of three azo dyes in water by photocatalysis of Fe (III) –oxalate complexes/H2O2 in the presence of inorganic salts. Dyes Pigments 73:261–268CrossRefGoogle Scholar
  20. Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385CrossRefGoogle Scholar
  21. Enache TA, Chiorcea-Paquim A-M, Fatibello-Filho O, Oliveira-Brett AM (2009) Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode. Electrochem Commun 11:1342–1345CrossRefGoogle Scholar
  22. Fan L, Zhou Y, Yang W, Chen G, Yang F (2006) Electrochemical degradation of Amaranth aqueous solution on ACF. J Hazard Mater B 137:1182–1188CrossRefGoogle Scholar
  23. Feng W, Nansheng D, Helin H (2000) Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere 41:1233–1238CrossRefGoogle Scholar
  24. Florenza X, Solano AMS, Centellas F, Martínez-Huitle CA, Brillas E, Garcia-Segura S (2014) Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products. Electrochim Acta 142:276–288CrossRefGoogle Scholar
  25. Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971CrossRefGoogle Scholar
  26. Hamad H, Bassyouni D, El-Ashtoukhy E-S, Amin N, Abd El-Latif M (2018) Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism. Ecotoxicol Environ Saf 148:57–68CrossRefGoogle Scholar
  27. Hammami S, Bellakhal N, Oturan N, Oturan MA, Dachraoui M (2008) Degradation of Acid Orange 7 by electrochemically generated OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: a mechanistic study. Chemosphere 73:678–684CrossRefGoogle Scholar
  28. Hamza M, Abdelhedi R, Brillas E, Sirés I (2009) Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes. J Electroanal Chem 627:41–50CrossRefGoogle Scholar
  29. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Critical review. Environ Sci Technol 30:449–505CrossRefGoogle Scholar
  30. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366CrossRefGoogle Scholar
  31. Isaev AB, Aliev ZM, Adamadzieva NA (2012) Photoelectrochemical oxidation of C.I. Direct Black 22 azo dye under elevated oxygen pressure. Russ J Appl Chem 85:765–769CrossRefGoogle Scholar
  32. Ju DJ, Byun IG, Park JJ, Lee CH, Ahn GH, Park TJ (2008) Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresour Technol 99:7971–7975CrossRefGoogle Scholar
  33. Kapałka A, Fóti G, Comninellis C (2008) Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J Appl Electrochem 38:7–16CrossRefGoogle Scholar
  34. Khamis E, Mahé D, Dardoize F, Devilliers D (2010) Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy. J Appl Electrochem 40:1829–1838CrossRefGoogle Scholar
  35. Khan AM, Mehmood A, Sayed M, Nazar MF, Ismail B, Khan RA, Ullah H, Abdur Rehman HM, Khan AY, Khan AR (2017) Influence of acids, bases and surfactants on the photocatalytic degradation of a model dye rhodamine B. J Mol Liq 236:395–403CrossRefGoogle Scholar
  36. Kolthoff IM, Miller IK (1951) The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73:3055–3059CrossRefGoogle Scholar
  37. Kornienko GV, Kenova TA, Kornienko VL, Maksimov NG, Balhareva MY (2016) Indirect electrochemical oxidation of aniline in acid electrolyte with active oxygen species. Russ J Appl Chem 89:1612–1618CrossRefGoogle Scholar
  38. Labiadh L, Barbucci A, Carpanese MP, Gadri A, Ammar S, Panizza M (2016) Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2as high oxidation power anodes. J Electroanal Chem 766:94–99CrossRefGoogle Scholar
  39. Li SX, Wei D, Mak NK, Cai ZW, Xu XR, Li HB, Jiang Y (2009) Degradation of diphenylamine by persulfate: performance optimization, kinetics and mechanism. J Hazard Mater 164:26–31CrossRefGoogle Scholar
  40. Li G, Zhu W, Chai X, Zhu L, Zhang X (2015) Partial oxidation of polyvinyl alcohol using a commercially available DSA anode. J Ind Eng Chem 31:55–60CrossRefGoogle Scholar
  41. Li Y, Zhang B, Borthwick AGL, Long Y (2016) Efficient electrochemical oxidation of thallium (I) in groundwater using boron-doped diamond anode. Electrochim Acta 222:1137–1143CrossRefGoogle Scholar
  42. Lorimer JP, Mason TJ, Plattes M, Phull SS, Walton DJ (2001) Degradation of dye effluent. Pure Appl Chem 73:1957–1968CrossRefGoogle Scholar
  43. Lourie YY (1984) Analytical chemistry of industrial wastewater. Moscow, 448pGoogle Scholar
  44. Marcucci M, Nosenzo G, Capannelli G, Ciabatti I, Corrieri D, Ciardelli G (2001) Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138:75–82CrossRefGoogle Scholar
  45. Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:79–83CrossRefGoogle Scholar
  46. Martınez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145CrossRefGoogle Scholar
  47. Martınez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340CrossRefGoogle Scholar
  48. Martínez-Huitle CA, Dos Santos EV, De Araújo DM, Panizza M (2012) Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J Electroanal Chem 674:103–107CrossRefGoogle Scholar
  49. Michaud P-A, Mahe E, Haenni W, Perret A, Comninellis C (2000) Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem Solid State Lett 3:77–79CrossRefGoogle Scholar
  50. Molina J, Fernández J, Del Río AI, Bonastre J, Cases F (2012) Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrode. Appl Surf Sci 258:6246–6256CrossRefGoogle Scholar
  51. Morais CCO, Da Silva AJC, Ferreira MB, De Araújo DM, Zanta CLPS, Castro SSL (2013) Electrochemical degradation of methyl red using Ti/Ru0.3Ti0.7O2: fragmentation of azo group. Electrocatal 4:312–319CrossRefGoogle Scholar
  52. Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B Environ 142–143:877–890CrossRefGoogle Scholar
  53. Moreno-Casillas HA, Cocke DL, Gomes JAG, Morkovsky P, Parga JR, Peterson E (2007) Electrocoagulation mechanism for COD removal. Sep Purif Technol 56:204–211CrossRefGoogle Scholar
  54. Morsi MS, Al-Sarawy AA, Shehab El-Dein WA (2011) Electrochemical degradation of some organic dyes by electrochemical oxidation on a Pb/PbO2 electrode. Desalin Water Treat 26:301–308CrossRefGoogle Scholar
  55. Nam W, Kim J, Han G (2002) Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor. Chemosphere 47:1019–1024CrossRefGoogle Scholar
  56. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227CrossRefGoogle Scholar
  57. Niu P, Hao J (2014) Efficient degradation of organic dyes by titanium dioxide–silicotungstic acid nanocomposite films: influence of inorganic salts and surfactants. Colloids Surf A Physicochem Eng Asp 443:501–507CrossRefGoogle Scholar
  58. O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (1999) Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018CrossRefGoogle Scholar
  59. Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generate hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482CrossRefGoogle Scholar
  60. Panakoulias T, Kalatzis P, Kalderis D, Katsaounis A (2010) Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J Appl Electrochem 40:1759–1765CrossRefGoogle Scholar
  61. Panizza M, Cerisola G (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res 35:3987–3992CrossRefGoogle Scholar
  62. Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48:1515–1519CrossRefGoogle Scholar
  63. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199CrossRefGoogle Scholar
  64. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820CrossRefGoogle Scholar
  65. Panizza M, Michaud PA, Cerisola G, Comninellis C (2001) Electrochemical treatment of wastewater containing organic pollutants on boron-doped diamond electrodes. Prediction of specific energy consumption and required electrode area. Electrochem Commun 3:336–339CrossRefGoogle Scholar
  66. Peleyeju MG, Umukoro EH, Babalola JO, Arotiba OA (2016) Electrochemical degradation of an anthraquinonic dye on an expanded graphite-diamond composite electrode. Electrocatal 7:132–139CrossRefGoogle Scholar
  67. Peral J, Garcia-Montano J, Torrades F, Perez-Estrada LA, Oller I, Malato S, Maldonado MI (2008) Degradation pathways of the commercial reactive azo dye Procion Red H-E7B under solar-assisted photo-Fenton reaction. Environ Sci Technol 42:6663–6670CrossRefGoogle Scholar
  68. Pérez G, Ibáñez R, Urtiaga AM, Ortiz I (2012) Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes. Chem Eng J 197:475–482CrossRefGoogle Scholar
  69. Polcaro AM, Vacca A, Palmas S, Mascia M (2003) Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes. J Appl Electrochem 33:885–892CrossRefGoogle Scholar
  70. Rahmah AU, Harimurti S, Murugesan T (2017) Experimental investigation on the effect of wastewater matrix on oxytetracycline mineralization using UV/H2O2 system. Int J Environ Sci Technol 14:1225–1233CrossRefGoogle Scholar
  71. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRefGoogle Scholar
  72. Sánchez-Carretero A, Sáez C, Cañizares P, Rodrigo M (2011) Electrochemical production of perchlorates using conductive diamond electrolyses. Chem Eng J 166:710–714CrossRefGoogle Scholar
  73. Särkkä H, Bhatnagar A, Sillanpää M (2015) Recent developments of electro-oxidation in water treatment–a review. J Electroanal Chem 754:46–56CrossRefGoogle Scholar
  74. Savas A, Koparal Y, Gurel CY, Ogutveren UB (2007) Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J Hazard Mater1 45:100–108Google Scholar
  75. Scialdone O (2009) Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim Acta 54:6140–6147CrossRefGoogle Scholar
  76. Scialdone O, Galia A, Guarisco C, Randazzo S, Filardo G (2008) Electrochemical incineration of oxalic acid at boron doped diamond anodes: role of operative parameters. Electrochem Acta 53:2095–2108CrossRefGoogle Scholar
  77. Serrano K, Michaud PA, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. ElectrochimActa 48:431–436CrossRefGoogle Scholar
  78. Shi J, Zhang B, Liang S, Li J, Wang Z (2018) Simultaneous decolorization and desalination of dye wastewater through electrochemical process. Environ Sci Pollut Res 25:8455–8464CrossRefGoogle Scholar
  79. Singh S, Lien Lo S, Srivastava VC, Hiwarkar AD (2016) Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification. J Environ Chem Eng 4:2911–2921CrossRefGoogle Scholar
  80. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367CrossRefGoogle Scholar
  81. Smit W, Hoogland JG (1971) The mechanism of the anodic formation of the peroxodisulphate ion on platinum–I. Establishment of the participating anion. Electrochim Acta 16:1–18CrossRefGoogle Scholar
  82. Song S, He ZQ, Chen JM (2007) UV/O3 combination degradation of aniline in aqueous solution. Ultrason Sonochem 14:84–88CrossRefGoogle Scholar
  83. Sripriya R, Chandrasekaran M, Subramanian K, Asokan K, Noel M (2007) Electrochemical destruction of p-chlorophenol and p-nitrophenol–influence of surfactants and anode materials. Chemosphere 69:254–261CrossRefGoogle Scholar
  84. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80CrossRefGoogle Scholar
  85. Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B Environ 40:271–286CrossRefGoogle Scholar
  86. Tavares MG, Da Silva LVA, Solano AMS, Tonholo J, Martinez-Huitle CA, Zanta CLPS (2012) Electrochemical oxidation of methyl red using Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. Chem Eng J 204–206:141–150CrossRefGoogle Scholar
  87. Thiam A, Sirés I, Centellas F, Cabot PL, Brillas E (2015a) Decolorization and mineralization of Allura red AC azo dye by solar photoelectro-Fenton: identification of intermediates. Chemosphere 136:1–8CrossRefGoogle Scholar
  88. Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015b) Effect of anions on electrochemical degradation of azo dye Carmoisine (acid red 14) using a BDD anode and air-diffusion cathode. Sep Purif Technol 140:43–52CrossRefGoogle Scholar
  89. Zhang B, Wang Z, Zhou X, Shi C, Guo H, Feng C (2015) Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells. Bioresour Technol 181:360–362CrossRefGoogle Scholar
  90. Zheng YM, Yunus RF, Nanayakkara KGN, Chen JP (2012) Electrochemical decoloration of synthetic wastewater containing rhodamine 6G: behaviors and mechanism. Ind Eng Chem Res 51:5953–5960CrossRefGoogle Scholar
  91. Zhu N, Gu L, Yuan H, Lou Z, Wang L, Zhang X (2012) Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2- naphthol-4-sulfonic acid using Fenton’s reagent. Water Res 46:3859–3867CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal Research Center “Krasnoyarsk Science Center SB RAS”Institute of Chemistry and Chemical Technology SB RASKrasnoyarskRussia
  2. 2.M.F. Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations